Notes
Notes - notes.io |
Surface mount technology (SMT) is a process for producing printed-circuit boards. The solder paste printer (SPP), package mounter, and solder reflow oven are used for SMT. The board on which the solder paste is deposited from the SPP is monitored by the solder paste inspector (SPI). If SPP malfunctions due to the printer defects, the SPP produces defective products, and then abnormal patterns are detected by SPI. In this article, we propose a convolutional recurrent reconstructive network (CRRN), which decomposes the anomaly patterns generated by the printer defects, from SPI data. CRRN learns only normal data and detects the anomaly pattern through the reconstruction error. CRRN consists of a spatial encoder (S-Encoder), a spatiotemporal encoder and decoder (ST-Encoder-Decoder), and a spatial decoder (S-Decoder). The ST-Encoder-Decoder consists of multiple convolutional spatiotemporal memories (CSTMs) with a spatiotemporal attention (ST-Attention) mechanism. CSTM is developed to extract spatiotemporal patterns efficiently. In addition, an ST-Attention mechanism is designed to facilitate transmitting information from the spatiotemporal encoder to the spatiotemporal decoder, which can solve the long-term dependency problem. We demonstrate that the proposed CRRN outperforms the other conventional models in anomaly detection. Moreover, we show the discriminative power of the anomaly map decomposed by the proposed CRRN through the printer defect classification.Hyperspectral imaging (HSI) classification has drawn tremendous attention in the field of Earth observation. In the big data era, explosive growth has occurred in the amount of data obtained by advanced remote sensors. Inevitably, new data classes and refined categories appear continuously, and such data are limited in terms of the timeliness of application. These characteristics motivate us to build an HSI classification model that learns new classifying capability rapidly within a few shots while maintaining good performance on the original classes. To achieve this goal, we propose a linear programming incremental learning classifier (LPILC) that can enable existing deep learning classification models to adapt to new datasets. Specifically, the LPILC learns the new ability by taking advantage of the well-trained classification model within one shot of the new class without any original class data. The entire process requires minimal new class data, computational resources, and time, thereby making LPILC a suitable tool for some time-sensitive applications. Moreover, we utilize the proposed LPILC to implement fine-grained classification via the well-trained original coarse-grained classification model. We demonstrate the success of LPILC with extensive experiments based on three widely used hyperspectral datasets, namely, PaviaU, Indian Pines, and Salinas. The experimental results reveal that the proposed LPILC outperforms state-of-the-art methods under the same data access and computational resource. The LPILC can be integrated into any sophisticated classification model, thereby bringing new insights into incremental learning applied in HSI classification.Continued great efforts have been dedicated toward high-quality trajectory generation based on optimization methods; however, most of them do not suitably and effectively consider the situation with moving obstacles; and more particularly, the future position of these moving obstacles in the presence of uncertainty within some possible prescribed prediction horizon. To cater to this rather major shortcoming, this work shows how a variational Bayesian Gaussian mixture model (vBGMM) framework can be employed to predict the future trajectory of moving obstacles; and then with this methodology, a trajectory generation framework is proposed which will efficiently and effectively address trajectory generation in the presence of moving obstacles, and incorporate the presence of uncertainty within a prediction horizon. In this work, the full predictive conditional probability density function (PDF) with mean and covariance is obtained and, thus, a future trajectory with uncertainty is formulated as a collision region represented by a confidence ellipsoid. To avoid the collision region, chance constraints are imposed to restrict the collision probability, and subsequently, a nonlinear model predictive control problem is constructed with these chance constraints. It is shown that the proposed approach is able to predict the future position of the moving obstacles effectively; and, thus, based on the environmental information of the probabilistic prediction, it is also shown that the timing of collision avoidance can be earlier than the method without prediction. The tracking error and distance to obstacles of the trajectory with prediction are smaller compared with the method without prediction.This article addresses the problems of the dissipative asynchronous Takagi-Sugeno-Kong fuzzy control for a kind of singular semi-Markov jump system. An adjustable quantized approach is presented to deal with the uncertainties, nonlinear disturbance, actuator faults, and time-varying delay of the system. To deal with the problem of the nonsynchronous between system modes and controller modes, an asynchronous method is utilized. Then, a novel asynchronous sliding-mode controller is designed with an output measurement quantizer that is adaptive to the actuator faults and has good performance in practical applications. By solving the linear matrix inequalities, the sufficient conditions are obtained to guarantee the closed system stochastically admissible and strictly (Q,R,S)-α-dissipative and ensure the reachability of the sliding-mode surface. Finally, two numerical examples and comparisons are provided to illustrate the effectiveness and the priority of the proposed technique.The cooperative bipartite containment control problem of linear multiagent systems is investigated based on the adaptive distributed observer in this article. The graph among the agents is structurally balanced. A novel distributed error term is designed to guarantee that some outputs of the followers converge to the convex hull spanned by the leaders, and the other followers' outputs converge to the symmetric convex hull. Masitinib cost The matrices of the exosystems are not available for each follower. A general method is presented to verify the validity of a novel distributed adaptive observer rather than the previous approach. In other words, the definition of the M-matrix is not necessary in our result. Based on the distributed adaptive observer, an output-feedback control protocol is designed to solve the bipartite containment control problem. Finally, a numerical simulation is given to illustrate the effectiveness of the theoretical results.
Read More: https://www.selleckchem.com/products/Masitinib-(AB1010).html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team