NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

AdipoAtlas: Maps out there human being bright adipose cells.
The task of wavefront sensing is to measure the phase of the optical field. Here, we demonstrate that the widely used Shack-Hartmann wavefront sensor detects the weak value of transverse momentum, usually achieved by the method of quantum weak measurement. We extend its input states to partially coherent states and compare it with the weak measurement wavefront sensor, which has a higher spatial resolution but a smaller dynamic range. Since weak values are commonly used in investigating fundamental quantum physics and quantum metrology, our work would find essential applications in these fields.We evaluate the impact of Power-over-Fiber (PoF) technology on the fronthaul of a 5G-NR network with an Analog-Radio-over-Fiber at 25.5 GHz on a 10 km long multicore fiber. The study in this Letter analyzes the bit error rate (BER) performance for different levels of energy transmitted by the PoF system. 133 mW of maximum optical power at reception is demonstrated showing negligible BER impact or data transmission BER improvement in a dedicated and shared scenario.We show that periodic optical patterns formed in a cold Rydberg atomic gas via electromagnetically induced transparency (EIT) can be selected by using a weakly modulated control laser field. We also show that the (hexagonal, stripe, square, etc.) patterns prepared in one probe laser field can be cloned onto another one with high fidelity via a double EIT.In this Letter, to the best of our knowledge, the first kilowatt monolithic Yb-doped fiber laser operating near 980 nm is demonstrated. The fiber laser is achieved with the help of an all-fiber amplifier fabricated with a 105/250-µm core/cladding-diameter double-cladding Yb-doped fiber. With 11-W seed light, about 1.11-kW output power was obtained with 65.3% slope efficiency. The center wavelength was around 978 nm with a 10-dB bandwidth of about 0.6 nm. About 34-dB suppression of 1030-nm amplified spontaneous emission was realized, and the output beam quality (M2 factor) was about 16.2 at maximum output power. Better beam quality can be expected by optimizing the seed light and active fiber. This work can provide significant guidance for the study and designation of high-power fiber lasers operating near 980 nm and other three-level fiber sources.A low-dispersion mirror (LDM), an important component in ultrafast laser systems, requires both a broad low-dispersion laser-induced damage threshold (LIDT). It is difficult for a traditional quarter-wavelength-based dielectric LDM to achieve these characteristics at the same time. We propose a novel, to the best of our knowledge, low-dispersion mirror (NLDM) that combines periodic chirped layers at the top and alternating quarter-wavelength layers at the bottom. Low dispersion is achieved by introducing a large same group delay (GD) for different wavelengths, so the bandwidth is broadened greatly. In addition, owing to the staggered electric field intensity peak effect in the structure, the NLDM shows the potential for high laser damage resistance. The experiments demonstrated that the NLDM doubles the low-dispersion bandwidth, while the LIDT is also increased compared with the LDM. This novel concept results in improved performance and paves the way toward a new generation of the LDM for ultrafast bandwidth and a high laser applications.We present a novel method for actively controlling circular and/or spin-rotational motion of an optically trapped airborne micro-particle. A 532-nm Gaussian laser beam is shaped into an elliptical ring by a pair of axicons and a cylindrical lens. The shaped beam is then focused into an elliptic cone that produces an optical trap. Vistusertib mouse As the cylindrical lens is rotated, a torque is exerted on the trapped particle, resulting in circular or spin-rotational motion. We show examples of the circular-rotational movement as a function of laser power and the rotation rate of the cylindrical lens.The intracavity optical tweezers is a new, to the best of our knowledge, cavity optomechanics system, implementing a self-feedback control of the particle's position by trapping the particle inside an active ring cavity. This self-feedback mechanism efficiently constructs a novel potential in the cavity. Here we predict and give experimental evidence for the self-feedback induced optical bistability in dual-beam intracavity optical tweezers. Then the characteristics of these bistable potential wells are investigated. The results show that we can prevent the bistable behaviors from destabilizing the trapping stability through tuning the foci offset of two propagating beams in the cavity. This contributes to the use of intracavity optical tweezers as a powerful tool for optical manipulation. Importantly, the thermally activated transition of the trapped particle in the bistable potential is observed for particular experimental parameters. Further investigation of this phenomenon could underlie the mechanism of many metastable-related processes in physics, chemistry, and biology.We present an ultra-wide band photonic integrated 4×4 polymer cross-bar switch matrix based on total internal reflection and the thermo-optic effect. The photonic integrated polymer switch owns low insertion loss, low power consumption, wavelength, and polarization-independent operation for all switching paths. The experimental results show ultra-wide band (O- to L-band) operation with fiber-to-fiber insertion losses ranging from -3.7 to -6.5dB, 0.1 to 0.6 dB polarization-dependent losses, switching the on-off ratio above 36 dB on average, and 25 mW power consumption per path. Error-free operation with a power penalty less then 0.2dB at 1 E-9 bit error rate (BER) for ultra-wide band non-return-to-zero on-off keying (NRZ-OOK) wavelength-division multiplexing (WDM) switched signals at 10, 25, 40, and 50 Gbit/s, and 510 Gbps dual polarization 64-QAM switched data with a negligible penalty were measured.We demonstrate the temporal pedestal suppression in a Tisapphire chirped-pulse amplification laser system. The far-field spectral phase noise can be avoided by using a stretcher based on two concave mirrors in the system, reducing the intensity and the time range of the amplified pulse's pedestal. At the amplified energy of 1.7 J, the contrast measurement showed that the pedestal intensity was at a level of about 10-10 within a 10 ps time window near the main pulse. In the proton acceleration experiment, a 10 nm thickness CH target was irradiated by the high-contrast pulse with the focused intensity of ∼1.4×1020W/cm2, which generated a proton beam with a cutoff energy of 16 MeV.It is demonstrated theoretically that the circularly polarized irradiation of two-dimensional conducting systems can produce composite bosons consisting of two electrons with different effective masses (different charge carriers), which are stable due to the Fermi sea of conduction electrons. As a result, an optically induced mixture of paired electrons and normal conduction electrons (the hybrid Bose-Fermi system) appears. Elementary excitations in such a hybrid system are analyzed, and possible manifestations of the light-induced electron pairing are discussed for semiconductor quantum wells.We study the self-frequency shift of continuously pumped Kerr solitons in AlN-on-sapphire microcavities with Raman gain bandwidths narrower than the cavity free-spectral range. Solitons are generated in ∼230GHz microcavities via high-order mode dispersion engineering. The dependence of the self-frequency shift on soliton pulse width is measured and differs from amorphous material microcavities. Our measurement and simulation reveal the impact of frequency detuning between the cavity resonances and Raman gain peaks, as well as the importance of all three Raman gain peaks. The interplay between the Raman effect and dispersive wave recoil and a potential quiet point are also observed.We propose a new, to the best of our knowledge, technique to capture single particles in real-time in a microfluidic system with controlled flow using micro-pillar traps fabricated by one-step. The micro pillars are fabricated in parallel by femtosecond multi-foci laser beams, which are generated by multiplexing gratings. As the generation process does not need integration loops, the pattern and the intensity distribution of the foci array can be controlled in real-time by changing the parameters of gratings. The real-time control of the foci array enables rapidly fabricating microtraps in the microchannel with adjustment of the pillar spaces and patterns according to the sizes and shapes of target particles. This technology provides an important step towards using platforms based on single-particle analysis, and it paves the way for the development of innovative microfluidic devices for single-cell analysis.We demonstrate an efficient hybrid-scheme for nonlinear pulse compression of high-power thin-disk oscillator pulses to the sub-10 fs regime. The output of a home-built, 16 MHz, 84 W, 220 fs YbYAG thin-disk oscillator at 1030 nm is first compressed to 17 fs in two nonlinear multipass cells. In a third stage, based on multiple thin sapphire plates, further compression to 8.5 fs with 55 W output power and an overall optical efficiency of 65% is achieved. Ultrabroadband mid-infrared pulses covering the spectral range 2.4-8µm were generated from these compressed pulses by intra-pulse difference frequency generation.Beam splitters are core components of photonic integrated circuits and are often implemented with multimode interference couplers. While these devices offer high performance, their operational bandwidth is still restrictive for sensing applications in the mid-infrared wavelength range. Here we experimentally demonstrate a subwavelength-structured 2×2 multimode interference coupler with high performance in the 3.1-3.7µm range, doubling the bandwidth of a conventional device.Subwavelength nonlinear optical sources with high efficiency have received extensive attention, although strong dynamic controllability of these sources is still elusive. Germanium antimony telluride (GST) as a well-established phase-change chalcogenide is a promising candidate for the reconfiguration of subwavelength nanostructures due to the strong non-volatile change of the index of refraction between its amorphous and crystalline states. Here, we numerically demonstrate an electromagnetically-induced-transparency-based silicon metasurface actively controlled with a quarter-wave asymmetric Fabry-Perot cavity incorporating GST to modulate the relative phase of incident and reflected pump beams. We demonstrate a giant third-harmonic generation (THG) switch with a modulation depth as high as ∼70dB at the resonant band. We also demonstrate the possibility of multi-level THG amplitude modulation for the fundamental C-band by controlling the crystallization fraction of GST at multiple intermediate states. This study shows the high potential of GST-based fast dynamic nonlinear photonic switches for real-world applications ranging from communications to optical computing.In this Letter, we give a new, to the best of our knowledge, perspective on the origin of light coherence in lasers. We demonstrate that a coherence appears below the lasing threshold and manifests itself as long-range correlations between polarizations of active medium atoms. These correlations contribute to the formation of a collective state of atomic polarizations and electromagnetic field modes, which interacts more effectively with the active medium and lases when pumping exceeds the lasing threshold. We demonstrate that inhibiting these atomic correlations leads to the destruction of the collective state and suppression of lasing. The obtained results open up new ways to control coherence.
Website: https://www.selleckchem.com/products/azd2014.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.