Notes
Notes - notes.io |
In consideration of offshore oil spill accidents, a mechanical method is a kind of widely used treatment methods to recover spilled oil at sea. It also has the advantages of low cost, convenient use, and environmental friendliness. In order to improve the recovery efficiency and oil content of liquid recovered, a novel mechanical spilled oil recovery philosophy coupling surface vortex and hydrocyclone separation was proposed, and a small-scale prototype was manufactured. Medium crude from Bohai oil field was applied as spilled oil to test the recovery property of the prototype skimmer. The experiment results show that the novel skimmer is able to recover spilled oil effectively on the sea surface and speed up the process of recovery. Pressure of overflow pipe is sensitive to pump frequency, flow rate of inlet, and split ratio. In addition, oil content at the overflow port is influenced by spilled oil amount on the surface and split ratio. Besides, linear relationship is found between the recovery efficiency and the split ratio. The experimental study can provide a technical reference for the treatment of a small amount of spilled oil on the water surface and also has great significance for the design of spilled oil recovery equipment.Thiophenic sulfur is the most stable and abundant organic sulfur species in petroleum. Removal of thiophenes has profound significance in environmental protection. In this work, we investigate the unimolecular pyrolysis of thiophene from a kinetic perspective. High-level ab initio methods have been employed to deduce the potential energy surface. Rate coefficients of the elementary reactions are computed using variational transition-state theory at the CCSD(T)/CBS level to develop a kinetic model. By comparison with preceding experimental results, the kinetic model shows good performance in calculating the thiophene pyrolysis rate. The Arrhenius expression for thiophene unimolecular pyrolysis has been redetermined as k = 1.21 × 1013 × exp[(78.96 kcal/mol)/(RT)]. The unimolecular pyrolysis of thiophene is mainly initiated by the ring-H migrations, whereas the C-S bond rupture has limited contribution to the overall pyrolysis rate. Thioketene (SC2H2) and ethyne (C2H2) are the major pyrolysis products at all temperatures. Significant amounts of the thioformyl (HCS) radical and CS could also be yielded. By contrast, atomic sulfur and H2S are difficult to be directly produced. Possible secondary reactions in the products have also been discussed.There is a significant need for new agents to combat malaria, which resulted in ∼409,000 deaths globally in 2019. We utilized a ring distortion strategy to create complex and diverse compounds from vincamine with the goal of discovering molecules with re-engineered biological activities. We found compound 8 (V3b) to target chloroquine-resistant Plasmodium falciparum Dd2 parasites (EC50 = 1.81 ± 0.09 μM against Dd2 parasites; EC50 > 40 μM against HepG2 cells) and established structure-activity relationships for 25 related analogues. New analogue 30 (V3ss, Dd2, EC50 = 0.25 ± 0.004 μM; HepG2, EC50 > 25 μM) was found to demonstrate the most potent activity, which prevents exit on the parasite from the schizont stage of intraerythrocytic development and requires >24 h to kill P. falciparum Dd2 cells. These findings demonstrate the potential that vincamine ring distortion has toward the discovery of novel antimalarial agents and other therapies significant to human health.The effects of different soil chemical amendments (T1, 1‰ quicklime + 1‰ superphosphate; T2, 1‰ quicklime; T3, 1‰ superphosphate) on the soil environment and growth of Malus hupehensis Rehd. seedlings in aged apple orchard soil were studied to provide new insight into the prevention and control of apple replant disease. The amendments differed in their ability to ameliorate the soil environment; nevertheless, they all promoted the growth of M. hupehensis Rehd. seedlings, and the greatest enhancement of growth was observed in T1. On August 15, 2018, soil urease, sucrase, phosphatase, and catalase activities were 1.67 times, 1.32 times, 1.62 times, and 1.35 times higher in T1 compared with CK, respectively. The soil pH increased, which alleviated soil acidification. T1 also promoted the renewal of the community structure and the diversity of soil microorganisms. The copy numbers of Fusarium solani and Fusarium oxysporum were 71.96 and 70.30% lower in T1 compared with CK, respectively. The seedling height and root length of M. hupehensis Rehd. seedlings increased by 40.97 and 289.69% in T1 compared with CK, respectively. Therefore, soil replanting obstacles can be overcome with the application of quicklime and superphosphate; these soil chemical amendments also improve the soil microbial ecological environment and promote the growth of M. hupehensis Rehd. seedlings.This study depicts the facile approach for the synthesis of chitosan/graphene oxide bionanocomposite (Chi/GO) beads via the gelation process. This is the first-ever study in which these Chi/GO beads have been utilized as a drug carrier for the oral drug delivery of metronidazole (MTD) drug, and investigations were made regarding the release pattern of the MTD drug using these Chi/GO beads as a drug carrier for a prolonged period of 84 h. The MTD is loaded on the surface as well as the cavity of the Chi/GO beads to result in MTD-Chi/GO bionanocomposite beads. The MTD drug loading was found to be 683 mg/g. Furthermore, the in vitro release patterns of pure drug and the drug encapsulated with Chi/GO beads are explored in simulated gastric as well as simulated intestinal fluids with phosphate-buffered saline (PBS) of pH 1.2 and 7.4, respectively. As-synthesized bionanocomposite beads have shown excellent stability and capacity for extended release of the MTD drug as compared to the pure drug in terms of bioavailability in both media. The cumulative release data are fitted with the Korsmeyer-Peppas kinetics and first-order reaction kinetics at pH 1.2 and 7.4. The synthesized bionanocomposite beads have good potential to minimize the multiple-dose frequency with the sustained drug release property and can reduce the side effects due to the drug.SLOCK (sensor for circadian clock) is an electrochemical sweat-based biosensing platform designed for the diagnosis and management of circadian abnormalities. Previously, the SLOCK platform was designed to detect adrenal steroids, cortisol, and DHEA for tracking the circadian rhythm. This work aims at tuning this SLOCK platform toward the detection of the cytokine, interleukin-31, for building a noninvasive, chronic disease diagnostics and management platform. This research provides a detailed characterization of the sensing surface and immunochemistry. The results show that SLOCK has good sensitivity to IL-31 concentrations in synthetic and human sweat. The limit of detection is 50 and 100 pg/mL for synthetic and human sweat, respectively. The dynamic range of the system is 50-1000 pg/mL, which encompasses the physiological ranges of 150-620 pg/mL. This is the first demonstration of sweat-based, label-free, electrochemical detection of IL-31. In addition to this, the data show good correlation (R 2 > 0.95) for the signal sensitivity to biomarker concentration. find protocol Finally, cross-reactivity studies highlight the specificity of SLOCK even in the presence of highly cross-reactive species. Thus, this novel SLOCK biosensor can be successfully used to track IL-31 in a sensitive and noninvasive manner and could be used to identify chronic pathophysiologies present in the body.Machaeriols are an important class of compounds that structurally resemble tetrahydrocannabinol (Δ9-THC), with the major differences being inverted stereochemistry at the ring junction as [6aR, 10aR] and an additional stereocenter at the C9 position of the A-ring due to saturation. A previous study reported that machaeriols did not show any cannabinoid receptor activity, even though these hexahydrodibenzopyran analogues mimic a privileged (+)-tetrahydrocannabinoid scaffold. To unravel structural requisites for modulation of cannabinoid receptors, a simple late-stage divergent approach was undertaken to functionalize the machaeriol scaffold using the Suzuki coupling reaction. Fourteen hexahydro analogues were synthesized and screened against both cannabinoid receptor isoforms, CB1 and CB2. Interestingly, many of the analogues showed a significant binding affinity for both receptors; however, two analogues, 11H and 11J, were identified as possessing CB2 receptor-selective functional activity in the GTPγS assay; they were found to be micromolar-range agonists, with EC50 values of 5.7 and 16 μM, respectively. Furthermore, molecular dynamics simulations between the CB2 receptor and two novel analogues resulted in unique interaction profiles by tightly occupying the active ligand-binding domain of the CB2 receptor and maintaining stable interactions with the critical residues Phe94, Phe281, and Ser285. For the first time, with the aid of structure-activity relationships of (+)-hexahydrocannabinoids, CB2 selective agonists were identified with late-stage diversification using palladium-mediated C-C bond formation. By simply switching to (R)-citronellal as a chiral precursor, enantiomerically pure (-)-hexahydrocannabinoids with better CB1/CB2 receptor isoform selectivity can be obtained using the current synthetic approach.Hydraulic fracturing is often used to exploit unconventional hydrocarbons, and proppants are usually added during hydraulic fracturing to keep the fractures induced open. Nevertheless, time-dependent proppant embedment has often been neglected in previous studies. In this survey, the fractional Maxwell model is first proposed to describe the viscoelastic deformation of tight sandstones. Then, the fractional rheological model is incorporated into the finite element framework in ABAQUS to establish a numerical model to investigate the time-dependent embedment of proppants in viscoelastic formations. Parameter sensitivity studies are also performed to investigate the influences of the mechanical characteristics of proppants and formation on the embedment depth. Several factors that influence proppant embedment are also discussed.The high-temperature syngas and molten slag droplets discharged from entrained-flow coal gasifiers contain a large amount of heat energy, which can be efficiently recovered by radiant syngas coolers (RSCs). However, it is hard to know the solidification degree of molten slag droplets at the outlet of an RSC during industrial operations. In this work, the industrial-scale RSC and molten slag droplet models are established to predict the solidification degree of slag droplets at the outlet of the RSC. Then, the effects of slag diameter, syngas flow field, slag initial temperature, slag porosity, and slag pore structure are investigated by numerical simulations, and residence time as well as complete solidification time are calculated by coupling of a discrete-phase model and a solidification model. The results indicate that as the slag droplet diameter increases, the residence time of the slag droplet shortens, but the complete solidification time increases. When the slag droplet diameter is greater than or equal to 3.
My Website: https://www.selleckchem.com/btk.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team