Notes
Notes - notes.io |
The bulk-boundary or bulk-edge correspondence is a principle relating surface confined states to the topological classification of the bulk. By marrying non-Hermitian ingredients in terms of gain or loss with media that violate reciprocity, an unconventional non-Bloch bulk-boundary correspondence leads to unusual localization of bulk states at boundaries-a phenomenon coined non-Hermitian skin effect. Here, we numerically employ the acoustoelectric effect in electrically biased and layered piezophononic media as a solid framework for non-Hermitian and nonreciprocal topological mechanics in the MHz regime. Thanks to a non-Hermitian skin effect for mechanical vibrations, we find that the bulk bands of finite systems are highly sensitive to the type of crystal termination, which indicates a failure of using traditional Bloch bands to predict the wave characteristics. More surprisingly, when reversing the electrical bias, we unveil how topological edge and bulk vibrations can be harnessed either at the same or opposite interfaces. Yet, while bulk states are found to display this unconventional skin effect, we further discuss how in-gap edge states in the same instant, counterintuitively are able to delocalize along the entire layered medium. We foresee that our predictions will stimulate new avenues in echo-less ultrasonics based on exotic wave physics.Animal cells form contractile structures to promote various functions, from cell motility to cell division. Force generation in these structures is often due to molecular motors such as myosin that require polar substrates for their function. Here, we propose a motor-free mechanism that can generate contraction in biopolymer networks without the need for polarity. This mechanism is based on active binding and unbinding of cross-linkers that breaks the principle of detailed balance, together with the asymmetric force-extension response of semiflexible biopolymers. We find that these two ingredients can generate steady state contraction via a nonthermal, ratchetlike process. We calculate the resulting force-velocity relation using both coarse-grained and microscopic models.The Z_2×Z_2 symmetry-protected topological (SPT) phase hosts a robust boundary qubit at zero temperature. At finite energy density, the SPT phase is destroyed and bulk observables equilibrate in finite time. Nevertheless, we predict parametric regimes in which the boundary qubit survives to arbitrarily high temperature, with an exponentially longer coherence time than that of the thermal bulk degrees of freedom. In a dual picture, the persistence of the qubit stems from the inability of the bulk to absorb the virtual Z_2×Z_2 domain walls emitted by the edge during the relaxation process. We confirm the long coherence times via exact diagonalization and connect it to the presence of a pair of conjugate almost strong zero modes. Our results provide a route to experimentally construct long-lived coherent boundary qubits at infinite temperature in disorder-free systems. To this end, we propose and analyze an implementation using a Rydberg optical-tweezer array and demonstrate that the difference between edge- and bulk-spin autocorrelators can be distinguished on timescales significantly shorter than the typical coherence time.We propose a spintronics-based hardware implementation of neuromorphic computing, specifically, the spiking neural network, using topological winding textures in one-dimensional antiferromagnets. The consistency of such a network is emphasized in light of the conservation of topological charges, and the natural spatiotemporal interconversions of magnetic winding. We discuss the realization of the leaky integrate-and-fire behavior of neurons and the spike-timing-dependent plasticity of synapses. Our proposal opens the possibility for an all-spin neuromorphic platform based on antiferromagnetic insulators.Reported herein is a practical method for macrolactam synthesis via a Rh(III)-catalyzed ring closing alkene-alkene cross-coupling reaction. The reaction proceeded via a Rh-catalyzed alkenyl sp2 C-H activation process, which allows access to macrocyclic molecules of different ring sizes. Macrolactams containing a conjugated diene framework could be easily prepared in high chemoselectivities and Z,E stereoselectivities.Colloidal quantum dots (QDs) exhibit unique characteristics such as facile color tunability, pure color emission with extremely narrow bandwidths, high luminescence efficiency, and high photostability. In addition, quantum dot light-emitting diodes (QLEDs) feature bright electroluminescence, low turn-on voltage, and ultrathin form factor, making them a promising candidate for next-generation displays. To achieve the overarching goal of the full-color display based on the electroluminescence of QDs, however it is essential to enhance the performance of QLEDs further for each color (e.g., red, green, and blue; RGB) and develop novel techniques for patterning RGB QD pixels without cross-contamination. Here, we present state-of-the-art material, process, and device technologies for full-color QLED-based displays. First, we highlight recent advances in the development of efficient red-, green-, and blue-monochromatic QLEDs. In particular, we focus on the progress of heavy-metal-free QLEDs. Then, we describe patterning techniques for individual RGB QDs to fabricate pixelated displays. Finally, we briefly summarize applications of such QLEDs, presenting the possibility of full-color QLED-based displays.Contact-line pinning and dynamic friction are fundamental forces that oppose the motion of droplets on solid surfaces. Everyday experience suggests that if a solid surface offers low contact-line pinning, it will also impart a relatively low dynamic friction to a moving droplet. Examples of such surfaces are superhydrophobic, slippery porous liquid-infused, and lubricant-impregnated surfaces. Here, however, we show that slippery omniphobic covalently attached liquid-like (SOCAL) surfaces have a remarkable combination of contact-angle hysteresis and contact-line friction properties, which lead to very low droplet pinning but high dynamic friction against the motion of droplets. We present experiments of the response of water droplets to changes in volume at controlled temperature and humidity conditions, which we separately compare to the predictions of a hydrodynamic model and a contact-line model based on molecular kinetic theory. Our results show that SOCAL surfaces offer very low contact-angle hysteresis, between 1 and 3°, but an unexpectedly high dynamic friction controlled by the contact line, where the typical relaxation time scale is on the order of seconds, 4 orders of magnitude larger than the prediction of the classical hydrodynamic model. Our results highlight the remarkable wettability of SOCAL surfaces and their potential application as low-pinning, slow droplet shedding surfaces.Developing low-cost and efficient electrocatalysts to accelerate oxygen evolution reaction (OER) kinetics is vital for water and carbon-dioxide electrolyzers. The fastest-known water oxidation catalyst, Ni(Fe)O x H y , usually produced through an electrochemical reconstruction of precatalysts under alkaline condition, has received substantial attention. However, the reconstruction in the reported catalysts usually leads to a limited active layer and poorly controlled Fe-activated sites. Here, we demonstrate a new electrochemistry-driven F-enabled surface-reconstruction strategy for converting the ultrathin NiFeO x F y nanosheets into an Fe-enriched Ni(Fe)O x H y phase. The activated electrocatalyst shows a low OER overpotential of 218 ± 5 mV at 10 mA cm-2 and a low Tafel slope of 31 ± 4 mV dec-1, which is among the best for NiFe-based OER electrocatalysts. Such superior performance is caused by the effective formation of the Fe-enriched Ni(Fe)O x H y active-phase that is identified by operando Raman spectroscopy and the substantially improved surface wettability and gas-bubble-releasing behavior.Although lead halide perovskites are demonstrated to be promising photocatalysts for hydrogen evolution from hydrogen halide splitting, it still remains challenging to fabricate efficient and stable catalysts. Here MoS2 nanoflowers with abundant active sites are assembled with methylammonium lead iodide (MAPbI3) microcrystals to form a new heterostructure. Its hydrogen evolution rate can reach up to about 30 000 μmol g-1 h-1, which is more than 1000-fold higher than pristine MAPbI3 under visible light irradiation (λ ≥ 420 nm). Importantly, the solar HI splitting efficiency reaches 7.35%, one of the highest efficiencies so far. The introduction of MoS2 with proper band alignment and unsaturated species can efficiently promote the charge separation and afford more active sites for H2 production. selleck kinase inhibitor This finding not only provides a highly efficient and stable photocatalyst for hydrogen evolution but also offers a useful modification strategy on lead halide perovskites.Curing kinetic models provide insight into how design parameters affect the kinetics of photopolymerization. However, they do not provide insight into how networks form or how they influence the process. This article describes a molecular dynamics simulation framework for simulating photoinitiated, chain growth, free radical polymerization. The framework was applied to simulate the photo-induced polymerization of bisphenol A (EO)10 diacrylate under varying conditions of curing light intensity and photoinitiator concentration. Results from the simulations agree very well with curing kinetic curves and gelation points derived from experiments. The simulations also reveal that (1) gelation is highly correlated with the formation of giant molecules, (2) differences in the number of free radicals generated at the beginning of polymerization significantly affect polymer network formation at low to intermediate conversion, and thus affect the gelation point, and (3) increasing light intensity or photoinitiator concentration tends to delay the gelation point, but does not affect the ultimate polymer network structure near the latter stages of photopolymerization.Overexpression of PIM 1, 2, and 3 kinases is frequently observed in many malignancies. Previously, we discovered a potent and selective pan-PIM kinase inhibitor, compound 2, currently in phase I clinical trials. In this work, we were interested in replacing the amino group on the cyclohexane ring in compound 2 with a hydroxyl group. Structure-based drug design led to cellularly potent but metabolically unstable tetra-substituted cyclohexyl diols. Efforts on the reduction of Log D by introducing polar heterocycles improved metabolic stability. Incorporating fluorine to the tetra-substituted cyclohexyl diol moiety further reduced Log D, resulting in compound 14, a cellularly potent tetra-substituted cyclohexyl diol inhibitor with moderate metabolic stability and good permeability. We also describe the development of efficient and scalable synthetic routes toward synthetically challenging tetra-substituted cyclohexyl diol compounds. In particular, intermediate 36 was identified as a versatile intermediate, enabling a large-scale synthesis of highly substituted cyclohexane derivatives.
Here's my website: https://www.selleckchem.com/products/cwi1-2-hydrochloride.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team