Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Virtual Reality (VR) has been adopted as a leading technology for the metaverse, yet most previous VR systems provide one-size-fits-all experiences to users. Context-awareness in VR enables personalized experiences in the metaverse, such as improved embodiment and deeper integration of the real world and virtual worlds. Personalization requires context data from diverse sources. We proposed a reusable and extensible context data collection framework, ManySense VR, which unifies data collection from diverse sources for VR applications. ManySense VR was implemented in Unity based on extensible context data managers collecting data from data sources such as an eye tracker, electroencephalogram, pulse, respiration, galvanic skin response, facial tracker, and Open Weather Map. We used ManySense VR to build a context-aware embodiment VR scene where the user's avatar is synchronized with their bodily actions. The performance evaluation of ManySense VR showed good performance in processor usage, frame rate, and memory footprint. Additionally, we conducted a qualitative formative evaluation by interviewing five developers (two males and three females; mean age 22) after they used and extended ManySense VR. The participants expressed advantages (e.g., ease-of-use, learnability, familiarity, quickness, and extensibility), disadvantages (e.g., inconvenient/error-prone data query method and lack of diversity in callback methods), future application ideas, and improvement suggestions that indicate potential and can guide future development. In conclusion, ManySense VR is an efficient tool for researchers and developers to easily integrate context data into their Unity-based VR applications for the metaverse.Nowadays, there are a multitude of solutions for indoor positioning, as opposed to standards for outdoor positioning such as GPS. Among the different existing studies on indoor positioning, the use of Wi-Fi signals together with Machine Learning algorithms is one of the most important, as it takes advantage of the current deployment of Wi-Fi networks and the increase in the computing power of computers. Thanks to this, the number of articles published in recent years has been increasing. This fact makes a review necessary in order to understand the current state of this field and to classify different parameters that are very useful for future studies. What are the most widely used machine learning techniques? In what situations have they been tested? How accurate are they? Have datasets been properly used? What type of Wi-Fi signals have been used? These and other questions are answered in this analysis, in which 119 papers are analyzed in depth following PRISMA guidelines.With countless devices connected to the Internet of Things, trust mechanisms are especially important. IoT devices are more deeply embedded in the privacy of people's lives, and their security issues cannot be ignored. Smart contracts backed by blockchain technology have the potential to solve these problems. Therefore, the security of smart contracts cannot be ignored. We propose a flexible and systematic hybrid model, which we call the Serial-Parallel Convolutional Bidirectional Gated Recurrent Network Model incorporating Ensemble Classifiers (SPCBIG-EC). The model showed excellent performance benefits in smart contract vulnerability detection. In addition, we propose a serial-parallel convolution (SPCNN) suitable for our hybrid model. It can extract features from the input sequence for multivariate combinations while retaining temporal structure and location information. The Ensemble Classifier is used in the classification phase of the model to enhance its robustness. In addition, we focused on six typical smart contract vulnerabilities and constructed two datasets, CESC and UCESC, for multi-task vulnerability detection in our experiments. Numerous experiments showed that SPCBIG-EC is better than most existing methods. It is worth mentioning that SPCBIG-EC can achieve F1-scores of 96.74%, 91.62%, and 95.00% for reentrancy, timestamp dependency, and infinite loop vulnerability detection.Diabetes mellitus is a serious chronic disease that affects the blood sugar levels in individuals, with current predictions estimating that nearly 578 million people will be affected by diabetes by 2030. Patients with type II diabetes usually follow a self-management regime as directed by a clinician to help regulate their blood glucose levels. Today, various technology solutions exist to support self-management; however, these solutions tend to be independently built, with little to no research or clinical grounding, which has resulted in poor uptake. In this paper, we propose, develop, and implement a nudge-inspired artificial intelligence (AI)-driven health platform for self-management of diabetes. The proposed platform has been co-designed with patients and clinicians, using the adapted 4-cycle design science research methodology (A4C-DSRM) model. The platform includes (a) a cross-platform mobile application for patients that incorporates a macronutrient detection algorithm for meal recognition and nudge-inspired meal logger, and (b) a web-based application for the clinician to support the self-management regime of patients. this website Further, the platform incorporates behavioral intervention techniques stemming from nudge theory that aim to support and encourage a sustained change in patient lifestyle. Application of the platform has been demonstrated through an illustrative case study via two exemplars. Further, a technical evaluation is conducted to understand the performance of the MDA to meet the personalization requirements of patients with type II diabetes.Fruit industries play a significant role in many aspects of global food security. They provide recognized vitamins, antioxidants, and other nutritional supplements packed in fresh fruits and other processed commodities such as juices, jams, pies, and other products. However, many fruit crops including peaches (Prunus persica (L.) Batsch) are perennial trees requiring dedicated orchard management. The architectural and morphological traits of peach trees, notably tree height, canopy area, and canopy crown volume, help to determine yield potential and precise orchard management. Thus, the use of unmanned aerial vehicles (UAVs) coupled with RGB sensors can play an important role in the high-throughput acquisition of data for evaluating architectural traits. One of the main factors that define data quality are sensor imaging angles, which are important for extracting architectural characteristics from the trees. In this study, the goal was to optimize the sensor imaging angles to extract the precise architectural trait information by evaluating the integration of nadir and oblique images. A UAV integrated with an RGB imaging sensor at three different angles (90°, 65°, and 45°) and a 3D light detection and ranging (LiDAR) system was used to acquire images of peach trees located at the Washington State University's Tukey Horticultural Orchard, Pullman, WA, USA. A total of four approaches, comprising the use of 2D data (from UAV) and 3D point cloud (from UAV and LiDAR), were utilized to segment and measure the individual tree height and canopy crown volume. Overall, the features extracted from the images acquired at 45° and integrated nadir and oblique images showed a strong correlation with the ground reference tree height data, while the latter was highly correlated with canopy crown volume. Thus, selection of the sensor angle during UAV flight is critical for improving the accuracy of extracting architectural traits and may be useful for further precision orchard management.The evaluation of baroreflex sensitivity (BRS) has proven to be critical for medical applications. The use of α indices by spectral methods has been the most popular approach to BRS estimation. Recently, an algorithm termed Gaussian average filtering decomposition (GAFD) has been proposed to serve the same purpose. GAFD adopts a three-layer tree structure similar to wavelet decomposition but is only constructed by Gaussian windows in different cutoff frequency. Its computation is more efficient than that of conventional spectral methods, and there is no need to specify any parameter. This research presents a novel approach, referred to as modulated Gaussian filter (modGauss) for BRS estimation. It has a more simplified structure than GAFD using only two bandpass filters of dedicated passbands, so that the three-level structure in GAFD is avoided. This strategy makes modGauss more efficient than GAFD in computation, while the advantages of GAFD are preserved. Both GAFD and modGauss are conducted extensively in the time domain, yet can achieve similar results to conventional spectral methods. In computational simulations, the EuroBavar dataset was used to assess the performance of the novel algorithm. The BRS values were calculated by four other methods (three spectral approaches and GAFD) for performance comparison. From a comparison using the Wilcoxon rank sum test, it was found that there was no statistically significant dissimilarity; instead, very good agreement using the intraclass correlation coefficient (ICC) was observed. The modGauss algorithm was also found to be the fastest in computation time and suitable for the long-term estimation of BRS. The novel algorithm, as described in this report, can be applied in medical equipment for real-time estimation of BRS in clinical settings.Photovoltaic panels exposed to harsh environments such as mountains and deserts (e.g., the Gobi desert) for a long time are prone to hot-spot failures, which can affect power generation efficiency and even cause fires. The existing hot-spot fault detection methods of photovoltaic panels cannot adequately complete the real-time detection task; hence, a detection model considering both detection accuracy and speed is proposed. In this paper, the feature extraction part of YOLOv5 is replaced by the more lightweight Focus structure and the basic unit of ShuffleNetv2, and then the original feature fusion method is simplified. Considering that there is no publicly available infrared photovoltaic panel image dataset, this paper generates an infrared photovoltaic image dataset through frame extraction processing and manual annotation of a publicly available video. Consequently, the number of parameters of the model was 3.71 M, mAP was 98.1%, and detection speed was 49 f/s. A comprehensive comparison of the accuracy, detection speed, and model parameters of each model showed that the indicators of the new model are superior to other detection models; thus, the new model is more suitable to be deployed on the UAV platform for real-time photovoltaic panel hot-spot fault detection.Object detection is one of the most important and challenging branches of computer vision. It has been widely used in people's lives, such as for surveillance security and autonomous driving. We propose a novel dual-path multi-scale object detection paradigm in order to extract more abundant feature information for the object detection task and optimize the multi-scale object detection problem, and based on this, we design a single-stage general object detection algorithm called Dual-Path Single-Shot Detector (DPSSD). The dual path ensures that shallow features, i.e., residual path and concatenation path, can be more easily utilized to improve detection accuracy. Our improved dual-path network is more adaptable to multi-scale object detection tasks, and we combine it with the feature fusion module to generate a multi-scale feature learning paradigm called the "Dual-Path Feature Pyramid". We trained the models on PASCAL VOC datasets and COCO datasets with 320 pixels and 512 pixels input, respectively, and performed inference experiments to validate the structures in the neural network.
Website: https://www.selleckchem.com/products/irak4-in-4.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team