Notes
Notes - notes.io |
Aquaponics are food production systems advocated for food security and health. Their sustainability from a nutritional and plant health perspective is, however, a significant challenge. Recirculated aquaculture systems (RAS) form a major part of aquaponic systems, but knowledge about their microbial potential to benefit plant growth and plant health is limited. The current study tested if the diversity and function of microbial communities in two commercial RAS were specific to the fish species used (Tilapia or Clarias) and sampling site (fish tanks and wastewaters), and whether they confer benefits to plants and have in vitro antagonistic potential towards plant pathogens.
Microbial diversity and composition was found to be dependent on fish species and sample site. The Tilapia RAS hosted higher bacterial diversity than the Clarias RAS; but the later hosted higher fungal diversity. Both Tilapia and Clarias RAS hosted bacterial and fungal communities that promoted plant growth, inhibited plant pathogens and encouraged biodegradation. The production of extracellular enzymes, related to nutrient availability and pathogen control, by bacterial strains isolated from the Tilapia and Clarias systems, makes them a promising tool in aquaponics and in their system design.
This study explored the microbial diversity and potential of the commercial RAS with either Tilapia or Clarias as a tool to benefit the aquaponic system with respect to plant growth promotion and control of plant diseases.
This study explored the microbial diversity and potential of the commercial RAS with either Tilapia or Clarias as a tool to benefit the aquaponic system with respect to plant growth promotion and control of plant diseases.
There is an urgent need to elucidate the epidemiology of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) and characterize its potential impact. Investing in characterising the SARS-CoV2 will help plan and improve the response to the pandemic. Furthermore, it will help identify the most efficient ways of managing the pandemic, avoiding public health policies and interventions that may be unduly restrictive of normal activity or unnecessarily costly. This paper describes the design and reports findings of a population based epidemiological study undertaken to characterise SARS-CoV2 in Qatar using limited resources in a timely manner.
Asymptomatic individuals ≥10 years registered with Qatar's publicly funded primary health provider were eligible. A stratified random sampling technique was utilized to identify the study sample. Participants were invited to an appointment where they completed a questionnaire and provided samples for polymerase chain reaction and Immunoglobulin M and G immunoassnumber of asymptomatic cases observed. Robust contact tracing and social distancing measures are key to prevent future outbreaks.
The study provides an example of a methodologically robust approach that can be undertaken in a timely manner with limited resources. It reports much-needed epidemiological data about the spread of SARS-CoV2. Given the low prevalence rates, majority of the population in Qatar remains susceptible. Enhanced surveillance must continue to be in place, particularly due to the large number of asymptomatic cases observed. Robust contact tracing and social distancing measures are key to prevent future outbreaks.
A considerable amount of evidence demonstrates the potential of saliva in the diagnosis of COVID-19. Our aim was to determine the sensitivity of saliva versus swabs collected by healthcare workers (HCWs) and patients themselves to assess whether saliva detection can be offered as a cost-effective, risk-free method of SARS-CoV-2 detection.
This study was conducted in a hospital involving outpatients and hospitalized patients. A total of 3018 outpatients were tested. Of these, 200 qRT-PCR-confirmed SARS-CoV-2-positive patients were recruited for further study. In addition, 101 SARS-CoV-2-positive hospitalized patients with symptoms were also enrolled in the study. From outpatients, HCWs collected nasopharyngeal swabs (NPS), saliva were obtained. From inpatients, HCWs collected swabs, patient-collected swabs, and saliva were obtained. qRT-PCR was performed to detect SARS-CoV-2 by TAQPATH assay to determine the sensitivity of saliva detection. Sensitivity, specificity and positive/negative predictive values (tients.
Saliva which is easier to collect than nasopharyngeal swab is a viable alternate to detect SARS-COV-2 in symptomatic patients in the early stage of onset of symptoms. Although saliva is currently not recommended for screening asymptomatic patients, optimization of collection and uniform timing of sampling might improve the sensitivity enabling its use as a screening tool at community level.
Saliva which is easier to collect than nasopharyngeal swab is a viable alternate to detect SARS-COV-2 in symptomatic patients in the early stage of onset of symptoms. Although saliva is currently not recommended for screening asymptomatic patients, optimization of collection and uniform timing of sampling might improve the sensitivity enabling its use as a screening tool at community level.
Growing large crop monocultures and heavily using pesticides enhances the evolution of pesticide-insensitive pests and pathogens. To reduce pesticide use in crop cultivation, the application of priming-active compounds (PrimACs) is a welcome alternative. PrimACs strengthen the plant immune system and could thus help to protect plants with lower amounts of pesticides. PrimACs can be identified, for example, by their capacity to enhance the respiratory activity of parsley cells in culture as determined by the oxygen transfer rate (OTR) using the respiration activity monitoring system (RAMOS) or its miniaturized version, µRAMOS. The latter was designed for with suspensions of bacteria and yeast cells in microtiter plates (MTPs). So far, RAMOS or µRAMOS have not been applied to adult plants or seedlings, which would overcome the limitation of (µ)RAMOS to plant suspension cell cultures.
In this work, we introduce a modified µRAMOS for analysis of plant seedlings. The novel device allows illuminating the seedliable screening for PrimACs in plant seedlings.
We disclose the suitability of µRAMOS for identifying PrimACs in plant seedlings. The difference in OTR during a night period between primed and unprimed plants was distinguishable after elicitation with flg22. Thus, it has been shown that the µRAMOS device can be used for a reliable screening for PrimACs in plant seedlings.
Flexibility of plant metabolism is supported by redox regulation of enzymes via posttranslational modification of cysteine residues, especially in plastids. Here, the redox states of cysteine residues are partly coupled to the thioredoxin system and partly to the glutathione pool for reduction. Moreover, several plastid enzymes involved in reactive oxygen species (ROS) scavenging and damage repair draw electrons from glutathione. In addition, cysteine residues can be post-translationally modified by forming a mixed disulfide with glutathione (S-glutathionylation), which protects thiol groups from further oxidation and can influence protein activity. However, the evolution of the plastid glutathione-dependent redox network in land plants and the conservation of cysteine residues undergoing S-glutathionylation is largely unclear.
We analysed the genomes of nine representative model species from streptophyte algae to angiosperms and found that the antioxidant enzymes and redox proteins belonging to the plastconservation suggests that S-glutathionylation in plastids plays an important and yet under-investigated role in redox regulation and stress response.
We conclude that the glutathione-dependent redox network in plastids is highly conserved in streptophytes with some variability in scavenging and damage repair enzymes. Our analysis of cysteine conservation suggests that S-glutathionylation in plastids plays an important and yet under-investigated role in redox regulation and stress response.
Confounding bias is a common concern in epidemiological research. Its presence is often determined by comparing exposure effects between univariable- and multivariable regression models, using an arbitrary threshold of a 10% difference to indicate confounding bias. However, many clinical researchers are not aware that the use of this change-in-estimate criterion may lead to wrong conclusions when applied to logistic regression coefficients. This is due to a statistical phenomenon called noncollapsibility, which manifests itself in logistic regression models. This paper aims to clarify the role of noncollapsibility in logistic regression and to provide guidance in determining the presence of confounding bias.
A Monte Carlo simulation study was designed to uncover patterns of confounding bias and noncollapsibility effects in logistic regression. An empirical data example was used to illustrate the inability of the change-in-estimate criterion to distinguish confounding bias from noncollapsibility effects.
an inverse probability weighted model.
In logistic regression, the difference between the univariable- and multivariable effect estimate might not only reflect confounding bias but also a noncollapsibility effect. Ideally, the set of confounders is determined at the study design phase and based on subject matter knowledge. To quantify confounding bias, one could compare the unadjusted exposure effect estimate and the estimate from an inverse probability weighted model.
Sunflower is an important oilseed crop domesticated in North America approximately 4000 years ago. During the last century, oil content in sunflower was under strong selection. click here Further improvement of oil properties achieved by modulating its fatty acid composition is one of the main directions in modern oilseed crop breeding.
We searched for the genetic basis of fatty acid content variation by genotyping 601 inbred sunflower lines and assessing their lipid and fatty acid composition. Our genome-wide association analysis based on the genotypes for 15,483 SNPs and the concentrations of 23 fatty acids, including minor fatty acids, revealed significant genetic associations for eleven of them. Identified genomic regions included the loci involved in rare fatty acids variation on chromosomes 3 and 14, explaining up to 34.5% of the total variation of docosanoic acid (220) in sunflower oil.
This is the first large scale implementation of high-throughput lipidomic profiling to sunflower germplasm characterization. This study contributes to the genetic characterization of Russian sunflower collections, which made a substantial contribution to the development of sunflower as the oilseed crop worldwide, and provides new insights into the genetic control of oil composition that can be implemented in future studies.
This is the first large scale implementation of high-throughput lipidomic profiling to sunflower germplasm characterization. This study contributes to the genetic characterization of Russian sunflower collections, which made a substantial contribution to the development of sunflower as the oilseed crop worldwide, and provides new insights into the genetic control of oil composition that can be implemented in future studies.
Website: https://www.selleckchem.com/products/icrt3.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team