Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
05). Compared with the H/R and H/R + si-NC groups, the H/R + si-SNHG7 group had significantly reduced level of LDH and MDA, increased activity of SOD, reduced apoptosis rate, reduced level of Bax protein, increased level of Bcl-2 protein (all P< 0.05). The dual luciferase report experiment confirmed that SNHG7 could target miR-181b-5p. Interference with the expression of miR-181b-5p could reduce the effect of silencing SNHG7 on H/R-induced cardiomyocyte oxidative stress and apoptosis.
Silencing SNHG7 may inhibit H/R-induced cardiomyocyte oxidative stress and apoptosis by up-regulating the expression of miR-181b-5p, thereby exerting a protective effect on cardiomyocytes.
Silencing SNHG7 may inhibit H/R-induced cardiomyocyte oxidative stress and apoptosis by up-regulating the expression of miR-181b-5p, thereby exerting a protective effect on cardiomyocytes.
To explore the molecular basis for a rare case with Para-Bombay AB blood type.
Serological method was used to determine the blood type of the proband. read more Exons 6 and 7 of the ABO gene and the coding regions of FUT1 and FUT2 genes were analyzed by direct sequencing.
Serological results showed that the proband was a Para-Bombay AB subtype. His genotype was determined as ABO*A1.02/B.01. The proband was also found to harbor c.551-552delAG and c.881-882delTT of the FUT1 gene. link2 For his four children, there were three type B and one type A, though the expression of the H type was normal.
The double deletions in the coding region of the FUT1 gene probably underlay the Para-Bombay blood type in the proband. Carrier of single-strand deletions may have a normal ABO phenotype.
The double deletions in the coding region of the FUT1 gene probably underlay the Para-Bombay blood type in the proband. Carrier of single-strand deletions may have a normal ABO phenotype.
To determine the genotype of an individual suspected for Aw through DNA sequencing.
Serologic testing was carried out with standard methods. Exons 6 and 7 of the ABO genes were amplified by PCR and subjected to direct sequencing or sequenced after gene cloning.
Serological testing showed that the forward typing and reverse typing were Aw and A, respectively. DNA sequencing revealed that the individual has carried an Aw allele and an O allele. Haplotype sequencing of each allele has revealed a nt543 variant (543G>C) in the Aw allele.
The individual was verified as a rare A subtype, which was previously unreported in mainland China.
The individual was verified as a rare A subtype, which was previously unreported in mainland China.
To explore the molecular mechanism of a case where RhD genotyping did not match serological results.
The serological results of 8 members from two generations of this family were analyzed. And according to Mendelian law of inheritance, RhD genotyping, zygotic type determination and gene sequencing were performed for the family members.
The proband and one of her cousins have the same RhD alleles, both of them have a 336-1G>A intron variant RhD allele and a complete RhD deletion allele. The variant alleles are inherited from two of their parents with blood relationship, while the complete-deleted alleles come from the other. link3 336-1G>A means that the last base G of the second intron of the RhD gene is mutated to A, which leads to a negative RhD serology and a positive genotype in the proband.
There was a rare 336-1G> A intron variant gene (RhD * 01N.25) in this family, which was a recessive gene relative to the RhD gene and resulted in RhD phenotype negative.
A intron variant gene (RhD * 01N.25) in this family, which was a recessive gene relative to the RhD gene and resulted in RhD phenotype negative.
To verify a rare allele of human leukocyte antigen (HLA) and analyze its inheritance and 3D molecular structure.
PCR-sequence-based typing, PCR-single strand oligonucleotide polymorphism and single allele-specific sequencing were carried out to characterize the rare HLA-C allele and its transmission in the family. Its protein structure was modeled by using SWISS-MODEL, Phyre2 and FATCAT software.
Analysis indicated that the rare allele (HLA-C*0884) has transmitted from the proband's mother and has differed from HLA-C*0801 by a single base (g.512G>C), resulting in substitution of an amino acid (p.Trp147Ser). Modeling of the 3D structure of the encoded protein indicated that the amino acid residue variation is located at the alpha 2 helix, which participates the formation of pocket F. Modeling of the structures of C*0884, C*0801, C*0802, C*0803 and C*0822 has suggested significant variation in the peptide binding regions of the backbone, with root mean square errors being 1.70 nm, 1.79 nm, 0.71 nm and 1.70 nm, respectively.
A rare HLA-C*0884 allele has been identified, and its clinical significance has been analyzed.
A rare HLA-C*0884 allele has been identified, and its clinical significance has been analyzed.
To investigate the association of fetal cardiac structural abnormalities with chromosomal aneuploidies and copy number variations (CNVs) in amniocytes.
328 pregnant women were subjected to fetal ultrasonography and chromosomal microarray analysis (CMA). Based on the fetal heart structure, the subjects were divided into normal (n=273) and abnormal groups (n=55). The detection rates of chromosomal aneuploidies and CNVs were compared between the two groups. Spearman method was used to assess the association between the results and fetal cardiac structural abnormalities.
The detection rates for chromosomal aneuploidies and CNVs in the abnormal group were significantly higher than that in the normal group (P< 0.05), and the incidence of fetal cardiac structural abnormalities was strongly associated with chromosomal aneuploidies and CNVs (P< 0.05).
Fetal chromosomal aneuploidies and CNVs are strongly associated with cardiac structural abnormalities.
Fetal chromosomal aneuploidies and CNVs are strongly associated with cardiac structural abnormalities.
To delineate the clinical and genetic features of a fetus with micrognathia, low-set ears, microtia, polyhydramnios and anechoic stomach by ultrasonography.
Whole exome sequencing (WES) was carried out to detect genetic variant in the fetus, for which routine chromosomal karyotyping and chromosomal microarray analysis (CMA) yielded no positive finding. Candidate variants were verified by Sanger sequencing and bioinformatic analysis.
WES revealed that the fetus has carried a de novo nonsense c.2302C>T (p.Q768X) variant in exon 23 of the EFTUD2 gene, which was detected in neither parent. The variant was unreported previously and may lead to premature termination of the translation of EFTUD2 protein at the 768th amino acid. Bioinformatic analysis predicted the amino acid to be highly conserved and may alter the structure and function of the EFTUD2 protein.
The c.2302C>T variant of the EFTUD2 gene probably underlay the mandibulofacial dysostosis Guion-Almeida type in the fetus. Discovery of the novel variant has enriched variant spectrum of the EFTUD2 gene and provided a basis for genetic counseling and prenatal diagnosis for the family.
T variant of the EFTUD2 gene probably underlay the mandibulofacial dysostosis Guion-Almeida type in the fetus. Discovery of the novel variant has enriched variant spectrum of the EFTUD2 gene and provided a basis for genetic counseling and prenatal diagnosis for the family.
To explore the genetic basis for a sib pair featuring 17beta-hydroxysteroid dehydrogenase type 3 deficiency.
Genomic DNA was extracted from the proband, her sister, and their parents, and was subjected to sequencing analysis with a gene panel for sexual development. Suspected variant was verified by Sanger sequencing and bioinformatic analysis.
Both the proband and her sister were found to harbor novel compound heterozygous missense variants of the HSD17B3 gene, namely c.839T>C (p.Leu280Pro) and c.239G>T (p.Arg80Leu), which were derived respectively from their mother and father. The variants were unreported previously and predicted to be deleterious by PolyPhen2, MutationTaster and other online software. Based on the American College of Medical Genetics and Genomics standards and guidelines, both c.839T>C(p.Leu280Pro) and c.239G>T (p.Arg80Leu) were predicted to be likely pathogenic (PM2+PP1+PP2+PP3+PP4, PM2+PM5+PP1+PP2+PP3+PP4).
The compound heterogeneous variants of the HSD17B3 gene probably underlay the disease in this sib pair. 17beta-hydroxysteroid dehydrogenase type 3 deficiency may lack specific clinical features and laboratory index, genetic testing can facilitate a definitive diagnosis.
The compound heterogeneous variants of the HSD17B3 gene probably underlay the disease in this sib pair. 17beta-hydroxysteroid dehydrogenase type 3 deficiency may lack specific clinical features and laboratory index, genetic testing can facilitate a definitive diagnosis.
To carry out prenatal diagnosis for a fetus with absent nasal bone by using cytogenetic and molecular techniques.
Chromosomal karyotyping, single nucleotide polymorphism array (SNP-array) and fluorescence in situ hybridization (FISH) assays were applied for the diagnoses. Peripheral blood samples were also taken from the parents for chromosomal karyotyping and FISH analysis.
The fetus was found to have a 46,XX,add(21)(p11.2) karyotype, and SNP-array has revealed a 11.3 Mb duplication at 21q22.12q22.3 (hg19 36 762 648-48 093 361), which was confirmed by FISH. Both parents were found to be normal by chromosomal karyotyping and FISH analysis. The fetus was ultimately found to have a karyotype of 46,XX,der(21)t(21;21)(p11.2;q22.1), resulting a de novo partial trisomy of 21q22.1.
Combined use of various techniques has enabled accurate prenatal diagnosis and genetic counseling for the fetus.
Combined use of various techniques has enabled accurate prenatal diagnosis and genetic counseling for the fetus.
To explore the genetic basis for a child with febrile seizures.
Peripheral venous blood samples were taken from the child and his parents for the analysis of chromosomal karyotype and dynamic variant of the FMR1 gene. The family trio was also subjected to target capture and next generation sequencing (NGS) with a gene panel related to developmental retardation, mental retardation, language retardation, epilepsy and special facial features.
The child was found to have a normal karyotype by conventional cytogenetic analysis (400 bands). No abnormal expansion was found with the CGG repeats of the FMR1 gene. NGS revealed that the child has carried a heterozygous c.864+1 delG variant of the MEF2C gene, which may lead to abnormal splicing and affect its protein function. The same variant was found in neither parent, suggesting that it has a de novo origin. Based on the American College of Medical Genetics and Genomics standards and guidelines, c.864+1delG variant of MEF2C gene was predicted to be pathogenic (PVS1+PS2+PM2).
MEF2C, as the key gene for chromosome 5q14.3 deletion syndrome which was speculated as a cause for febrile seizures, has an autosomal dominant effect. The c.864+1delG variant of the MEF2C gene may account for the febrile seizures in this patient.
MEF2C, as the key gene for chromosome 5q14.3 deletion syndrome which was speculated as a cause for febrile seizures, has an autosomal dominant effect. The c.864+1delG variant of the MEF2C gene may account for the febrile seizures in this patient.
My Website: https://www.selleckchem.com/products/3-methyladenine.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team