Notes
![]() ![]() Notes - notes.io |
Plants represent a safe and cost-effective platform for producing high-value proteins with pharmaceutical properties; however, the ability to accumulate these in commercially viable quantities is challenging. Ideal crops to serve as biofactories would include low-input, fast-growing, high-biomass species such as sugarcane. The objective of this study was to develop an efficient expression system to enable large-scale production of high-value recombinant proteins in sugarcane culms. Bovine lysozyme (BvLz) is a potent broad-spectrum antimicrobial enzyme used in the food, cosmetics and agricultural industries. Here, we report a novel strategy to achieve high-level expression of recombinant proteins using a combinatorial stacked promoter system. We demonstrate this by co-expressing BvLz under the control of multiple constitutive and culm-regulated promoters on separate expression vectors and combinatorial plant transformation. BvLz accumulation reached 1.4% of total soluble protein (TSP) (10.0 mg BvLz/kg culm mass) in stacked multiple promoterBvLz lines, compared to 0.07% of TSP (0.56 mg/kg) in single promoterBvLz lines. BvLz accumulation was further boosted to 11.5% of TSP (82.5 mg/kg) through event stacking by re-transforming the stacked promoterBvLz lines with additional BvLz expression vectors. The protein accumulation achieved with the combinatorial promoter stacking expression system was stable in multiple vegetative propagations, demonstrating the feasibility of using sugarcane as a biofactory for producing high-value proteins and bioproducts.Elevated levels of pregnancy-associated plasma protein-A (PAPP-A) have been implicated in the pathogenesis of various malignancies, including breast cancers. Breast cancer is one of the most frequent carcinomas and is the second most common cancer type detected in women of child-bearing age. see more Throughout pregnancy PAPP-A is produced and secreted by the placental syncytiotrophoblast cells; co-incidentally pregnancy-associated breast cancers often have an aggressive clinical course. The components of the PAPP-A/IGF axis was assessed in a panel of breast cancer cell lines. Using neutralising antibodies the impact of PAPP-A/IGF axis on cell motility was evaluated. PAPP-A was expressed in four of the twelve breast cancer cell lines tested. Blocking PAPP-A and IGFBP4 with neutralising antibodies significantly decreased motiliy of MDA-MB-231 cells. Upregulation of PAPP-A expression in breast tumours resulted in a trend towards worse overall survival. Notably, PAPP-A expression also positively correlated with epithelial-to-mesenchymal transition markers. In conclusion, these results indicate that PAPP-A plays an important role in breast cancer progression and it may be a promising therapeutic target in breast cancer.Artificial neural networks suffer from catastrophic forgetting. Unlike humans, when these networks are trained on something new, they rapidly forget what was learned before. In the brain, a mechanism thought to be important for protecting memories is the reactivation of neuronal activity patterns representing those memories. In artificial neural networks, such memory replay can be implemented as 'generative replay', which can successfully - and surprisingly efficiently - prevent catastrophic forgetting on toy examples even in a class-incremental learning scenario. However, scaling up generative replay to complicated problems with many tasks or complex inputs is challenging. We propose a new, brain-inspired variant of replay in which internal or hidden representations are replayed that are generated by the network's own, context-modulated feedback connections. Our method achieves state-of-the-art performance on challenging continual learning benchmarks (e.g., class-incremental learning on CIFAR-100) without storing data, and it provides a novel model for replay in the brain.Continuous cropping of tomato is increasingly practiced in greenhouse cultivation, leading to several soil-related obstacles. In this study, a type of microbial restoration substrate (MRS) was used to amend soils from the re-cropping of tomato for 8 years under greenhouse-cultivated conditions. Two treatments were established using 1,500 kg hm-2 of MRS to amend soil as treatment (TR), and non-MRS as control (CK). The severity of bacterial wilt (BW), soil properties and rhizobacterial community composition under two different treatments were compared. The application of MRS led to an average 83.75% reduction in the severity of BW, and significantly increased the plant height, root activity and yield. Meanwhile, soil pH, soil organic contents (SOC), total nitrogen (TN) and exchangeable calcium were significantly increased (P less then 0.05) by MRS treatment. Illumina-MiSeq sequencing analysis of the 16S rRNA genes revealed that MRS increased the diversity of the tomato rhizobacterial community. The relative abundances of Proteobacteria, Actinobacteria and Bacteroidetes were enhanced, whereas those of Acidobacteria, Chloroflexi, TM7 and Firmicutes were decreased by MRS. The redundancy analysis (RDA) revealed that the severity of tomato BW was negatively correlated with the relative abundances of Actinobacteria, Bacteroidetes and Proteobacteria, but positively correlated with those of Gemmatimonadetes, Firmicutes and Acidobacteria. In addition, the effects of MRS on rhizobacterial metabolic potentials were predicted using a Kyoto Encyclopedia of Genes and Genomes (KEGG) database, implying that MRS could significantly increase nitrogen metabolisms and reduce carbon metabolism. Together, our results indicated that the use of MRS could reestablish soil microbial communities, which was beneficial to plant health compared with the control.The sacroiliac joint (SIJ) is burdened with variant loads. However, no methods have allowed to measure objectively how the SIJ deforms during bipedal walking. In this study, in-vivo walking conditions were replicated in a kinematic model combining the finite element method with 3D walking analysis data divided into five phases in order to visualize the load transition on the SIJ and clarify the role of the SIJ. Both models with and without inclusion of the SIJ were investigated. In models with bilateral SIJs, the displacement differed greatly between the sacrum and both hip bones on the SIJ as the boundary. The movements of the sacrum involved a nutation movement in the stance phase and a counter-nutation in the swing phase relative to the ilium. In models without SIJs, the displacement of the pelvis and loads of pelvic ligaments decreased, and the equivalent stress of the SIJs increased compared to the model with SIJs. The walking loads cause distortion of the entire pelvis, and stress concentration at the SIJ are seen due to the morphology of the pelvic ring.
Read More: https://www.selleckchem.com/products/pf-07104091.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team