Notes
Notes - notes.io |
After the Middle East and North Africa region, Sub-Saharan Africa is expected to become the next hotspot of water scarcity along with several countries from Asia. In response, water-scarce countries need to promote water conservation, water recycling, and reuse; ensure sustainable water resources augmentation via harnessing the potential of unconventional water resources; support productivity enhancement of underperforming land and water resources; and address challenges beyond technical solutions. Pertinent political agenda and associated public policies, supportive institutions, institutional collaborations, and skilled professionals would be the key to ensure sufficient water supply for human use and ecosystems.The N2-fixing shrub Amorpha fruticosa L. is rapidly spreading in the dry riparian natural grasslands of Europe, altering ecosystem functions and depleting plant diversity. Alteration of the N cycle represents the key factor involved in invasions by N2-fixing plants with cascading effects on plant species richness. We hypothesized that A. fruticosa encroachment strongly impacts not only the N but also the C cycle and that the magnitude of such alterations may be modulated by soil characteristics. To test these hypotheses, we selected four river floodplains in North East of Italy and compared natural uninvaded grasslands with half invaded and completely invaded sites, based on A. fruticosa stand characteristic and relevant leaf traits and on soil properties related to soil texture and to C and N cycles. Soil organic matter mineralisation, ammonification and nitrification rates were determined. Soil nitrification increased remarkably with plant invasion while ammonification was significantly higher only in half invaded sites. Soil organic matter mineralisation, microbial biomass C sustained per soil organic C unit and nitrification positively correlated with stand age, regardless to the stage of the encroachment. Mineralisation and nitrification increased with soil organic C and total N in uninvaded and completely invaded sites, but decreased in half invaded sites. At the half invasion stage, trends in nitrification and CO2 mineralisation were transitionally reverted and remediation may be facilitated by less pronounced changes in soil properties compared to completely invaded sites. Direct effects of plant invasion are modulated by the action of soil characteristics such as soil organic C and clay contents, with soils rich in organic C showing larger nitrification and mineralisation rates.In a field experiment, annual nitrous oxide (N2O) emissions and grassland yield were measured across different plant communities, comprising systematically varying combinations of monocultures and mixtures of three functional groups (FG) grasses (Lolium perenne, Phleum pratense), legumes (Trifolium pratense, Trifolium repens) and herbs (Cichorium intybus, Plantago lanceolata). Plots received 150 kg ha-1 year-1 nitrogen (N) (150 N), except L. perenne monocultures which received two N levels 150 N and 300 N. The effect of plant diversity on N2O emissions was derived from linear combinations of species performances' in monoculture (species identity) and not from strong interactions between species in mixtures. Increasing from 150 N to 300 N in L. perenne resulted in a highly significant increase in cumulative N2O emissions from 1.39 to 3.18 kg N2O-N ha-1 year-1. Higher N2O emissions were also associated with the legume FG. Emissions intensities (yield-scaled N2O emissions) from multi-species mixture communities around the equi-proportional mixture were lowered due to interactions among species. For N2O emissions scaled by nitrogen yield in forage, the 6-species mixture was significantly lower than L. perenne at both 300 N and 150 N. In comparison to 300 N L. perenne, the same N yield or DM yield could have been produced with the equi-proportional 6-species mixture (150 N) while reducing N2O losses by 63% and 58% respectively. Compared to 150 N L. perenne, the same N yield or DM yield could have been produced with the 6-species mixture while reducing N2O losses by 41% and 24% respectively. Overall, this study found that multi-species grasslands can potentially reduce both N2O emissions and emissions intensities, contributing to the sustainability of grassland production.The combination of lactic acid production wastewater and oil-producing microalgal culture could not only achieve harmless treatment of wastewater but also provided nutrients and significant amounts of water for microalgal culture. Thus the effects of different nutrients on the biomass yield, lipid yield of Scenedesmus dimorphus with lactic acid wastewater were investigated. Although lactic acid wastewater was very suitable for the cultivation of oil-producing microalgae, some nutrients were still needed. So 0.79 g/L NaNO3, 14 mg/L MgSO4·7H2O, 4 mg/L K2HPO4·3H2O, and trace elements needed to be added in the microalgal culture with lactic acid wastewater. In the optimized wastewater medium, the lipid yield could reach 1.54 ± 0.04 g/L, which was 48.1% higher than the level of 1.04 ± 0.06 g/L in the BG11 medium. Microalgae cells had high absorption capacity for nitrogen and phosphorus. The nitrogen, phosphorus removal rate of wastewater reached 96.31% and 90.78%, respectively, after 10 days of culture. And the treated wastewater could be used for lactic acid production for four times. These investigations laid a foundation for reducing the pollution of lactic acid wastewater, exploring a late-model for oleaginous microalgae cleaner production.In the last decade, mirtazapine has become an important antidepressant in clinical use and has also been found at many different environmental sampling sites. Several homologies between the zebrafish Danio rerio and humans, combined with a number of advantages for behavioural and gene expression research using zebrafish embryos, make their use for the analysis of mirtazapine appropriate. The sedative effect of mirtazapine in humans was also found for a specific concentration range in zebrafish embryos (1333.4 μg/L - 2666.9 μg/L). Specifically, 116 hpf old zebrafish embryos showed a reduced swimming distance when exposed to 1334.4 μg/L mirtazapine. Furthermore, changes at the gene regulatory level could be measured (1333.4 μg/L), in particular in the superordinate regulatory systems. For selected transporters of all regulatory systems, an up regulation of the genes by a factor of more than five times could be measured at the highest mirtazapine exposure concentration that was tested. Finally, studies on the protein levels demonstrated an increase in acetylcholinesterase activity for several exposure concentrations (83.3 μg/L and 666.7 μg/L). The physiological changes in zebrafish embryos caused by mirtazapine demonstrate the relevance of these types of studies in aquatic non-target organisms. Such neuroactive substances could pose a potential risk for aquatic organisms below the previously considered concentration threshold for morphological effects.Understanding how markets drive unsustainable wildlife use is key for biodiversity conservation. Yet most approaches to date look at isolated components of wildlife markets, hindering our ability to intervene effectively to improve sustainability. To better assess and intervene in wildlife markets, we propose a framework that integrates three analytical levels. The first level, "actor", assesses the underlying motivations and mechanisms that allow or constrain how actors benefit from wildlife markets. The second level, "inter-actor", assesses the configuration of wildlife product supply-chains and the type of competition between actors participating in wildlife markets. The third level, "market", evaluates supply-demand dynamics, quantity and price determinants, and the presence and effect of illegal products flowing into markets. We showcase the utility of the framework in a data-limited small-scale fishery case study (common hake, Merluccius gayi gayi in Chile); our mixed-method analysis provided relevant, tailored management recommendations for improving sustainability. Tackling markets driving unsustainable wildlife use needs integrated approaches that bring together the diversity of factors affecting wildlife market dynamics.This study used a system dynamics model to evaluate the potential greenhouse gas (GHG) emissions from different waste-to-energy (WTE) facilities such as landfill sites, WTE plants, anaerobic digestion (AD)-based WTE plants, and material recovery facilities. On average, landfilling and incinerating 1 t of municipal solid waste (MSW) produced 1807.0 kg carbon dioxide (CO2)-eq/t and 373.3 kg CO2-eq/t of GHG emissions, respectively. Recycling waste helped to mitigate the GHG emissions and the output to merely 78.9 kg CO2-eq/t. Excess emission of 1848 t CO2-eq/y GHG accounted for the 3 percentage point difference in the electricity generation efficiency of WTE plants (25%) and AD-based WTE plants (28%). Therefore, it is suggested that the priority for MSW treatment should be AD-based WTE plants, WTE plants, and stand-alone AD systems (in descending order) to ensure maximum electricity generation and mitigation of GHG emissions. GHG emissions were most sensitive to the recycling rate, proportion of dry matter, and electricity coefficient. The predicted benefit to cost ratios of WTE and AD-based WTE plants in 2049 were 2.29 and 3.92, respectively. Based on these data, this study inferred that the feed-in tariff system, despite its high capital costs, must be encouraged to reduce the economic burden of WTE facilities.The consumption of pharmaceuticals and personal care products (PPCPs) for controlling and preventing the COVID-19 would have sharply increased during the pandemic. To evaluate their post-pandemic environmental impacts, five categories of drugs were detected in lakes and WWTP-river-estuary system near hospitals of Jinyintan, Huoshenshan and Leishenshan in the three regions (J, H and L) (Regions J, H and L) in Wuhan, China. The total amount of PPCPs (ranging from 2.61 to 1122 ng/L in water and 0.11 to 164 ng/g dry weight in sediments) were comparable to historical reports in Yangtze River basin, whereas the detection frequency and concentrations of ribavirin and azithromycin were higher than those of historical studies. The distribution of concerned drugs varied with space, season, media and water types sampling sites located at WWTPs-river-estuary system around two hospitals (Regions L and J) usually had relatively high waterborne contamination levels, most of which declined in autumn; lakes had relatively low waterborne contamination levels in summer but increased in autumn. Perifosine manufacturer The potential risks of detected PPCPs were further evaluated using the multiple-level ecological risk assessment (MLERA) sulfamethoxazole and azithromycin were found to pose potential risks to aquatic organisms according to a semi-probabilistic approach and classified as priority pollutants based on an optimized risk assessment. In general, the COVID-19 pandemic did not cause serious pollution in lakes and WWTPs-river-estuary system in Wuhan City. However, the increased occurrence of certain drugs and their potential ecological risks need further attention. A strict source control policy and an advanced monitoring and risk warning system for emergency response and long-term risk control of PPCPs is urgent.
Read More: https://www.selleckchem.com/products/Perifosine.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team