Notes
Notes - notes.io |
standing of the lithium-induced mechanisms, however, is important for prospective clinical trials which may pave the way for a successful bench-to-bedside translation in the future. In this review, we will give an overview of lithium-induced neuroprotective mechanisms under various pathological conditions, with special emphasis on ischemic stroke.In the porcine model discussed in this review, the acute subdural hematoma was induced by subdural injection of autologous blood over the left parietal cortex, which led to a transient elevation of the intracerebral pressure, measured by bilateral neuromonitoring. The hematoma-induced brain injury was associated with albumin extravasation, oxidative stress, reactive astrogliosis and microglial activation in the ipsilateral hemisphere. Further proteins and injury markers were validated to be used for immunohistochemistry of porcine brain tissue. The cerebral expression patterns of oxytocin, oxytocin receptor, cystathionine-γ-lyase and cystathionine-β-synthase were particularly interesting these four proteins all co-localized at the base of the sulci, where pressure-induced brain injury elicits maximum stress. In this context, the pig is a very relevant translational model in contrast to the rodent brain. The structure of the porcine brain is very similar to the human the presence of gyri and sulci (gyrencephalic brain), white matter to grey matter proportion and tentorium cerebelli. Thus, pressure-induced injury in the porcine brain, unlike in the rodent brain, is reflective of the human pathophysiology.A long-standing goal of spinal cord injury research is to develop effective repair strategies, which can restore motor and sensory functions to near-normal levels. gp91ds-tat cost Recent advances in clinical management of spinal cord injury have significantly improved the prognosis, survival rate and quality of life in patients with spinal cord injury. In addition, a significant progress in basic science research has unraveled the underlying cellular and molecular events of spinal cord injury. Such efforts enabled the development of pharmacologic agents, biomaterials and stem-cell based therapy. Despite these efforts, there is still no standard care to regenerate axons or restore function of silent axons in the injured spinal cord. These challenges led to an increased focus on another therapeutic approach, namely neuromodulation. In multiple animal models of spinal cord injury, epidural electrical stimulation of the spinal cord has demonstrated a recovery of motor function. Emerging evidence regarding the efficacy of epidural electrical stimulation has further expanded the potential of epidural electrical stimulation for treating patients with spinal cord injury. However, most clinical studies were conducted on a very small number of patients with a wide range of spinal cord injury. Thus, subsequent studies are essential to evaluate the therapeutic potential of epidural electrical stimulation for spinal cord injury and to optimize stimulation parameters. Here, we discuss cellular and molecular events that continue to damage the injured spinal cord and impede neurological recovery following spinal cord injury. We also discuss and summarize the animal and human studies that evaluated epidural electrical stimulation in spinal cord injury.Mesenchymal stem cells are multipotent cells that possess anti-inflammatory, anti-apoptotic and immunomodulatory properties. The effects of existing drugs for neurodegenerative disorders such as Alzheimer's disease are limited, thus mesenchymal stem cell therapy has been anticipated as a means of ameliorating neuronal dysfunction. Since mesenchymal stem cells are known to scarcely differentiate into neuronal cells in damaged brain after transplantation, paracrine factors secreted from mesenchymal stem cells have been suggested to exert therapeutic effects. Extracellular vesicles and exosomes are small vesicles released from mesenchymal stem cells that contain various molecules, including proteins, mRNAs and microRNAs. In recent years, administration of exosomes/extracellular vesicles in models of neurological disorders has been shown to improve neuronal dysfunctions, via exosomal transfer into damaged cells. In addition, various microRNAs derived from mesenchymal stem cells that regulate various genes and reduce neuropathological changes in various neurological disorders have been identified. This review summarizes the effects of exosomes/extracellular vesicles and exosomal microRNAs derived from mesenchymal stem cells on models of stroke, subarachnoid and intracerebral hemorrhage, traumatic brain injury, and cognitive impairments, including Alzheimer's disease.Neuroglobin (Ngb) is a 17 kDa monomeric hexa-coordinated heme protein belonging to the globin family. Ngb is mainly expressed in neurons of the central and peripheral nervous system, although moderate levels of Ngb have been detected in non-nervous tissues. In the past decade, Ngb has been studied for its neuroprotective role in a large number of neurological disorders such as Alzheimer's disease, Huntington's disease, brain ischemia and hypoxia. This review discusses and summarizes the natural compounds and the small synthetic molecules capable of modulating Ngb expression that exhibits a protective role against various neurodegenerative diseases.Traumatic brain injury is a sudden trauma or blow on the head, and severe traumatic brain injury is a major cause of death and disability worldwide. The acute and chronic consequences following traumatic brain injury can lead to progressive secondary neurodegenerative changes and cognitive dysfunction. To date, there is no effective pharmaceutical products for the treatment to reduce secondary damage after brain injury. The discovery of extracellular vesicles has attracted considerable scientific attention due to their role in cell-to-cell communication. Extracellular vesicles have shown their potential to carry not only biological molecules but also as a drug delivery vehicle. As a carrier of molecular information, extracellular vesicles have been involved in physiological functions as well as in the modulation of immune responses. Here, we aim to provide new insights into the contrasting role of extracellular vesicles in the propagation of inflammatory responses after brain injury. As a carrier of pro-inflammatory molecules, their role as functional mediators in the pathophysiology of brain injury is discussed, addressing the inhibition of the extracellular vesicle pathway as an anti-inflammatory or neuroprotective approach to improve the outcome of both acute and chronic inflammation following brain injury. Here, we summarize therapeutic strategies to diminish the risk the neurodegeneration post brain injury and propose that neutral sphingomyelinase inhibitors could be used as potentially useful therapeutic agents for the treatment of brain injury associated neuroinflammation.
Anthrax is a zoonotic disease of public health concern in India. One of the key predisposing factors is linked to the behaviour of the community. This study was nested within a baseline survey to understand the risk perception, attitude, socio-cultural and behavioural practices among different communities in an anthrax endemic tribal district of Odisha, India. It was aimed to explore the systemic gaps from the officials of different departments while addressing the animal and human anthrax cases and the knowledge, attitude, and behavioural practices among the tribal communities with regards to both animal and human anthrax signs, symptoms, and transmission from animal to human.
A qualitative exploratory study was carried out in the district of Koraput, Odisha. Insights from eight focus group discussions (FGDs) and 42 in-depth-interviews (IDIs) with the stakeholders from health, veterinary, forest, general administrative departments and community were collected and analyzed thematically.
Major themes thays for the elimination of anthrax cases in an endemic region.
The coordination gaps, financial burden, insufficient relevant knowledge and information among the concerned stakeholders were the issues found in this study in addition to non-availability of proper diagnostic facility. The coordination among different departments adapting One Health approach may be one of the best possible ways for the elimination of anthrax cases in an endemic region.
Japanese encephalitis/acute encephalitis syndrome (JE/AES) is one of the major zoonotic arbodiseases that has a significant effect on human and animal health. Though many studies have been published on the epidemiology and transmission mechanisms of JE/AES, but there is little evidence on health system preparedness, including community-based engagement. This study was undertaken to explore a multi-stakeholder perspective on health system preparedness for the prevention of JE/AES in a tribal district of Odisha, India.
This study was conducted at Malkangiri district of Odisha. A total of nine focus group discussions (FGDs) among women having under-five children, community volunteers, and community health workers (CHWs), and 20 in-depth-interviews (IDIs) among community leaders, healthcare providers, and programme managers were conducted. The FGDs and IDIs were digitally recorded, transcribed, translated and analysed using content analysis approach.
Health system preparedness for the prevention of JE/AES ws suggested that there was a need for a sustainability approach to active participation, orientation and capacity building training among CHWs and community volunteers to successfully implement the programme.Coastal areas are home to diverse ecosystems that provide essential goods and services for human wellbeing. Recognition, understanding and appreciation of the various goods and services provided by coastal ecosystems, especially the provisioning and cultural services are of utmost importance today. Systematic exploration of bioactive compounds from marine flora and fauna and deriving pharmaceuticals and nutraceuticals, as well as promotion of concepts such as the blue gym are essentially linked to human health and sustenance, necessitating measures towards preservation of these ecosystems. They also link Sustainable Development Goals, SDG 3 good health and wellbeing and, SDG-14 life below water.Gorakhpur division consisting of Gorakhpur and neighboring districts Deoria, Kushinagar and Maharajganj in Uttar Pradesh, India, have been witnessing seasonal outbreaks of acute encephalitis syndrome (AES) among children for the last three decades. Investigations conducted during 2005 identified Japanese encephalitis (JE) virus as an aetiology of AES. With the introduction of JE vaccination and other control strategies, the incidence of JE in the region declined, however, outbreaks of acute febrile illness with neurological manifestations continued to occur. Subsequent investigations identified Orientia tsutsugamushi, as the major aetiology of AES outbreaks in the region. This review details clinical, epidemiological, animal and entomological investigations conducted for AES due to O. tsutsugamushi during 2015 and 2017 in Gorakhpur region. Surveillance of acute febrile illness among children attending peripheral health facilities identified scrub typhus as an important aetiology of febrile illness during monsoon and post-monsoon months.
Homepage: https://www.selleckchem.com/peptide/gp91ds-tat.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team