Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The coalescence-induced droplet self-jumping behavior on the superhydrophobic surface (SHS) provides a new way to achieve atmospheric corrosion protection. This work controls the droplet self-jumping behavior by regulating the SHS's surface energy and analyzes the relevant mechanism from the energy perspective, revealing the key pathway by which the surface energy impacts the droplet self-jumping behavior. On this basis, the electrochemical impedance spectroscopy testing technique is used to evaluate the effect of the droplet self-jumping behavior on the SHS corrosion protection performance, and the SHS atmospheric corrosion protection mechanism based on the coalescence-induced droplet self-jumping behavior is revealed. This study provides theoretical guidance for the development of SHS-based anticorrosion protection.Designing low-cost preparation of high-activity electrocatalysts with excellent stability is the route one must take to fully realize large-scale application implementation of zinc-air batteries. 3D nitrogen-doped nanocarbons with transition metals or their derivatives encapsulated in show promising potential in the field of non-precious metal oxygen electrocatalysis. Herein, we report a simple, economical, and large-scale production method to construct worm-like porous nitrogen-doped carbon with in situ-grown carbon nanotubes and uniformly embedded Fe/Fe3C nanoparticles. It not only has high conductivity owing to the nitrogen-doped nature but also has ample active sites and electrolyte diffusion channels benefitting from the uniformly distributed heterostructural Fe/Fe3C nanoparticles and discrete hierarchically porous structures. When used as catalyst materials for a zinc-air battery, an energy density of 719.1 Wh kg-1 and a peak power density of 101.3 mW cm-2 at a 50 mA cm-2 discharge current density is achieved. Additionally, throughout charging and discharging for 200 cycles at a current density of 20 mA cm-2, the charge/discharge voltage gap is nearly constant.Using clean and sustainable stochastic energy from the environment to eliminate pollution caused by gaseous aldehydes would be an effective strategy to achieve the sustainable development of energy and preserve the environment. Here, a piston-based triboelectric nanogenerator (P-TENG) was used to enhance gaseous acetaldehyde absorption and photocatalytic degradation. An external electric field could be generated on a conductive substrate by the P-TENG, converting wind energy into electricity. This made it possible to efficiently degrade gaseous acetaldehyde in the photocatalytic system. Driven by a light breeze (3.0 m/s), the acetaldehyde removal rate of the system reached 63% within 30 min. The presence of an external electric field could generate more hydroxyl radicals (•OH), superoxide radicals (•O2-), and holes (h+), which has a positive effect on the photocatalytic degradation of acetaldehyde. The design and concept of this study not only realized the efficient conversion of renewable and sustainable random energy but also could be applied to the efficient removal of gaseous aldehydes, providing an effective way to create a cleaner environment.In this work, a free-standing microgel film with programmable and angle-independent structural color is prepared via a simple but effective method. Dried poly(styrene-N-isopropylacrylamide-acrylic acid) (pStNIPAAmAA) microgels were stabilized by inter-microgel crosslinking, and thus, only microgels were used to build the optical hydrogel. this website The free-standing microgel film displayed tunable structural color by the swelling/deswelling of the microgels under external stimuli, such as temperature, pH, ionic strength, and organic solvent. Moreover, the structural color of the film is angle-independent for the disordered microgel arrays. It is worth noting that programmable color stripes which have the panther chameleon's ability to change skin color are successfully fabricated by patterning microgels with different thermoresponsivities. More importantly, the microgel film has an ultrafast response to temperature (1.41 s from 20 to 40 °C) and pH (2.24 s from pH 8.3 to pH 2.0), much faster than that of most optical materials reported in previous studies.Negative differential resistance (NDR) can be applied to various devices such as reflection amplifiers, relaxation oscillators, and neuromorphic devices. However, the development of NDR photodetectors with uniformity, stability, and reproducibility for use in practical applications is still lacking. Herein, we demonstrate highly reliable NDR photodetectors by constructing a MoS2/p-Si heterostructure. Owing to the formation of a MoS2 layer with uniform thickness by the plasma-enhanced sulfurization process, a 100% yield with high uniformity (peak-to-valley ratio = 1.195 ± 0.065) was achieved for 120 devices. Furthermore, the proposed NDR photodetectors exhibit unprecedented high cycle-to-cycle endurance, which maintains their NDR characteristics through 100 000 consecutive sweeps without operational failure. This work paves the way for the development of a reliable NDR device and reports unprecedented results of high uniformity, reproducibility, and robustness for practical applications.
Turner syndrome (TS) patients are at high risk of cardiometabolic disorders. Cardiometabolic risk factors are more related to visceral rather than total body adiposity. Adipocytokines have been explored as a potential link between obesity and obesity-related cardiometabolic dysfunctions. We explored the validity of epicardial fat-thickness (EFT) and perihepatic fat-thickness (PHFT) as cardiometabolic-risk predictors in TS-girls in relation to standard obesity-indices and metabolic syndrome (MetS) components.
Forty-six TS girls and twenty-five controls (10-16 years) were subdivided into two age-groups (10-13 and 13-16). They were assessed for BMI-Z-scores, waist-circumference (WC), total-fat mass (FM) and trunk-FM by bioimpedance-technique, EFT and PHFT by cardiovascular magnetic resonance, lipid-profile, Homeostasis model assessment of insulin resistance (HOMA-IR), and serum chemerin. MetS was defined according to International Diabetes Federation criteria.
Overweight/obesity and MetS were detected in 45.
Homepage: https://www.selleckchem.com/products/pds-0330.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team