Notes
![]() ![]() Notes - notes.io |
The global coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is one of seven human coronaviruses. this website G-quadruplexes are intrinsic obstacles to genome replication. Whether G-quadruplexes are present in human coronaviruses is unknown. In the current study, we have predicted that all seven human coronaviruses harbor G-quadruplex sequences. Conserved G-quadruplex sequences in SARS-CoV and SARS-CoV-2 were analyzed and verified by circular dichroism (CD) spectroscopy and Thioflavin T fluorescence assay. Similar to SARS-CoV, SARS-CoV-2 encodes an nsP3 protein, which is predicted to associate with G-quadruplexes. Targeting G-quadruplex sequences in the SARS-CoV-2 genome by G-quadruplex ligands could be a new way to conquer COVID-19.Pathogenic microorganisms and their chronic pathogenicity are significant concerns in biomedical research. Biofilm-linked persistent infections are not easy to treat due to resident multidrug-resistant microbes. Low efficiency of various treatments and in vivo toxicity of available antibiotics drive the researchers toward the discovery of many effective natural anti-biofilm agents. Natural extracts and natural product-based anti-biofilm agents are more efficient than the chemically synthesized counterparts with lesser side effects. The present review primarily focuses on various natural anti-biofilm agents, i.e., phytochemicals, biosurfactants, antimicrobial peptides, and microbial enzymes along with their sources, mechanism of action via interfering in the quorum-sensing pathways, disruption of extracellular polymeric substance, adhesion mechanism, and their inhibitory concentrations existing in literature so far. This study provides a better understanding that a particular natural anti-biofilm molecule exhibits a different mode of actions and biofilm inhibitory activity against more than one pathogenic species. This information can be exploited further to improve the therapeutic strategy by a combination of more than one natural anti-biofilm compounds from diverse sources.Although it is well-known that human skin aging is accompanied by an alteration in the skin microbiota, we know little about how the composition of these changes during the course of aging and the effects of age-related skin microbes on aging. Using 16S ribosomal DNA and internal transcribed spacer ribosomal DNA sequencing to profile the microbiomes of 160 skin samples from two anatomical sites, the cheek and the abdomen, on 80 individuals of varying ages, we developed age-related microbiota profiles for both intrinsic skin aging and photoaging to provide an improved understanding of the age-dependent variation in skin microbial composition. According to the landscape, the microbial composition in the Children group was significantly different from that in the other age groups. Further correlation analysis with clinical parameters and functional prediction in each group revealed that high enrichment of nine microbial communities (i.e., Cyanobacteria, Staphylococcus, Cutibacterium, Lactobacillus, Corynebacterium, Streptococcus, Neisseria, Candida, and Malassezia) and 18 pathways (such as biosynthesis of antibiotics) potentially affected skin aging, implying that skin microbiomes may perform key functions in skin aging by regulating the immune response, resistance to ultraviolet light, and biosynthesis and metabolism of age-related substances. Our work re-establishes that skin microbiomes play an important regulatory role in the aging process and opens a new approach for targeted microbial therapy for skin aging.Tigecycline, a protein translation inhibitor, is a treatment of last resort for infections caused by the opportunistic multidrug resistance human pathogen Acinetobacter baumannii. However, strains resistant to tigecycline were reported not long after its clinical introduction. Translation inhibitor antibiotics perturb ribosome function and induce the reduction of (p)ppGpp, an alarmone involved in the stringent response that negatively modulates ribosome production. Through RNA sequencing, this study revealed a significant reduction in the transcription of genes in citric acid cycle and cell respiration, suggesting tigecycline inhibits or slows down bacterial growth. Our results indicated that the drug-induced reduction of (p)ppGpp level promoted the production but diminished the degradation of ribosomes, which mitigates the translational inhibition effect by tigecycline. The reduction of (p)ppGpp also led to a decrease of transcription coupled nucleotide excision repair which likely increases the chances of development of tigecycline resistant mutants. Increased expression of genes linked to horizontal gene transfer were also observed. The most upregulated gene, rtcB, involving in RNA repair, is either a direct tigecycline stress response or is in response to the transcription de-repression of a toxin-antitoxin system. The most down-regulated genes encode two β-lactamases, which is a possible by-product of tigecycline-induced reduction in transcription of genes associated with peptidoglycan biogenesis. This transcriptomics study provides a global genetic view of why A. baumannii is able to rapidly develop tigecycline resistance.In order to part address the problem of drug-resistant pathogens, antimicrobial peptides (AMPs) have been proposed as alternatives to traditional antibiotics. Herein, a novel phylloseptin peptide, named phylloseptin-PV1 (PPV1), is described from the defensive skin secretion of the Neotropical white-lined leaf frog, Phyllomedusa vaillantii. The peptide was synthesized by solid phase peptide synthesis (SPPS) and purified by RP-HPLC, prior to assessment of its biological activities. PPV1 not only demonstrated potent antimicrobial activity against planktonic ESKAPE microorganisms and the yeast, Candida albicans, but also inhibited and eradicated Staphylococcus aureus and MRSA biofilms. The antimicrobial mechanism was shown to include permeabilization of target cell membranes. The in vivo antimicrobial activity of the peptide was then evaluated using mice. PPV1 also exhibited antiproliferative activity against the cancer cell lines, H157, MCF-7, and U251MG, but had a lower potency against the normal cell line, HMEC-1.
Homepage: https://www.selleckchem.com/products/pfi-2.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team