Notes
![]() ![]() Notes - notes.io |
Over the two last decades, coronaviruses have affected human life in different ways, especially in terms of health and economy. Due to the profound effects of novel coronaviruses, growing tides of research are emerging in various research fields. This paper employs a co-word analysis approach to map the intellectual structure of the coronavirus literature for a better understanding of how coronavirus research and the disease itself have developed during the target timeframe. A strategic diagram has been drawn to depict the coronavirus domain's structure and development. A detailed picture of coronavirus literature has been extracted from a huge number of papers to provide a quick overview of the coronavirus literature. The main themes of past coronavirus-related publications are (a) "Antibody-Virus Interactions," (b) "Emerging Infectious Diseases," (c) "Protein Structure-based Drug Design and Antiviral Drug Discovery," (d) "Coronavirus Detection Methods," (e) "Viral Pathogenesis and Immunity," and (f) "Animal Coronaviruses." The emerging infectious diseases are mostly related to fatal diseases (such as Middle East respiratory syndrome, severe acute respiratory syndrome, and COVID-19) and animal coronaviruses (including porcine, turkey, feline, canine, equine, and bovine coronaviruses and infectious bronchitis virus), which are capable of placing animal-dependent industries such as the swine and poultry industries under strong economic pressure. Although considerable research into coronavirus has been done, this unique field has not yet matured sufficiently. Therefore, "Antibody-virus Interactions," "Emerging Infectious Diseases," and "Coronavirus Detection Methods" hold interesting, promising research gaps to be both explored and filled in the future.Many nations responded to the corona virus disease-2019 (COVID-19) pandemic by restricting travel and other activities during 2020, resulting in temporarily reduced emissions of CO2, other greenhouse gases and ozone and aerosol precursors. We present the initial results from a coordinated Intercomparison, CovidMIP, of Earth system model simulations which assess the impact on climate of these emissions reductions. 12 models performed multiple initial-condition ensembles to produce over 300 simulations spanning both initial condition and model structural uncertainty. We find model consensus on reduced aerosol amounts (particularly over southern and eastern Asia) and associated increases in surface shortwave radiation levels. However, any impact on near-surface temperature or rainfall during 2020-2024 is extremely small and is not detectable in this initial analysis. Regional analyses on a finer scale, and closer attention to extremes (especially linked to changes in atmospheric composition and air quality) are required to test the impact of COVID-19-related emission reductions on near-term climate.During the COVID-19 lockdown in 2020, large-scale industrial and transportation emissions were reduced, but high PM2.5 concentration still occurred. This study investigated the variation of particle number size distribution during the lockdown, and analyzed the characteristics of new particle formation (NPF) events and its potential impact on haze formation. KU-55933 research buy Through measurement conducted in urban Beijing during the first 3 months of 2020, and comparison with year-over-year data, the decrease of primary Aitken-mode particles was observed. However, frequencies, formation rates and growth rates of NPF events remained stable between 2020 and 2019 in the same period. As a result, >25 nm particles produced by NPF events, would play a more important role in serving as the haze formation "seeds" compared to those produced by primary emissions. This finding emphasizes the significance on the understanding of NPF mechanisms when making pollution mitigation policy in the future.Responding to the 2020 COVID-19 outbreak, China imposed an unprecedented lockdown producing reductions in air pollutant emissions. However, the lockdown driven air pollution changes have not been fully quantified. We applied machine learning to quantify the effects of meteorology on surface air quality data in 31 major Chinese cities. The meteorologically normalized NO2, O3, and PM2.5 concentrations changed by -29.5%, +31.2%, and -7.0%, respectively, after the lockdown began. However, part of this effect was also associated with emission changes due to the Chinese Spring Festival, which led to ∼14.1% decrease in NO2, ∼6.6% increase in O3 and a mixed effect on PM2.5 in the studied cities that largely resulted from festival associated fireworks. After decoupling the weather and Spring Festival effects, changes in air quality attributable to the lockdown were much smaller -15.4%, +24.6%, and -9.7% for NO2, O3, and PM2.5, respectively.Under the influence of Coronavirus Disease 2019 (COVID-19), China conducted a nationwide lockdown (LD) which significantly reduced anthropogenic emissions. To analyze the different impacts of COVID-19 on black carbon (BC) in the two representative regions in China, one-year continuous online measurements of BC were conducted simultaneously in Beijing and Tibet. The average concentration in the LD period was 20% higher than that in the pre-LD period in Beijing, which could be attributed to the increase of transport from southwestern neighboring areas and enhanced aged BC. In contrast to megacity, the average concentration of BC in Tibet decreased over 70% in the LD period, suggesting high sensitivity of plateau background areas to the anthropogenic emission reduction in South Asia. Our study clearly showed that BC responded very differently in megacity and background areas to the change of anthropogenic emission under the lockdown intervention.Responses to COVID-19 have resulted in unintended reductions of city-scale carbon dioxide (CO2) emissions. Here, we detect and estimate decreases in CO2 emissions in Los Angeles and Washington DC/Baltimore during March and April 2020. We present three lines of evidence using methods that have increasing model dependency, including an inverse model to estimate relative emissions changes in 2020 compared to 2018 and 2019. The March decrease (25%) in Washington DC/Baltimore is largely supported by a drop in natural gas consumption associated with a warm spring whereas the decrease in April (33%) correlates with changes in gasoline fuel sales. In contrast, only a fraction of the March (17%) and April (34%) reduction in Los Angeles is explained by traffic declines. Methods and measurements used herein highlight the advantages of atmospheric CO2 observations for providing timely insights into rapidly changing emissions patterns that can empower cities to course-correct CO2 reduction activities efficiently.Economic activities and the associated emissions have significantly declined during the 2019 novel coronavirus (COVID-19) pandemic, which has created a natural experiment to assess the impact of the emitted precursor control policy on ozone (O3) pollution. In this study, we utilized comprehensive satellite, ground-level observations, and source-oriented chemical transport modeling to investigate the O3 variations during the COVID-19 pandemic in China. Here, we found that the significant elevated O3 in the North China Plain (40%) and Yangtze River Delta (35%) were mainly attributed to the enhanced atmospheric oxidation capacity (AOC) in these regions, associated with the meteorology and emission reduction during lockdown. Besides, O3 formation regimes shifted from VOC-limited regimes to NOx-limited and transition regimes with the decline of NOx during lockdown. We suggest that future O3 control policies should comprehensively consider the effects of AOC on the O3 elevation and coordinated regulations of the O3 precursor emissions.Satellite nitrogen dioxide (NO2) measurements are used extensively to infer nitrogen oxide emissions and their trends, but interpretation can be complicated by background contributions to the NO2 column sensed from space. We use the step decrease of US anthropogenic emissions from the COVID-19 shutdown to compare the responses of NO2 concentrations observed at surface network sites and from satellites (Ozone Monitoring Instrument [OMI], Tropospheric Ozone Monitoring Instrument [TROPOMI]). After correcting for differences in meteorology, surface NO2 measurements for 2020 show decreases of 20% in March-April and 10% in May-August compared to 2019. The satellites show much weaker responses in March-June and no decrease in July-August, consistent with a large background contribution to the NO2 column. Inspection of the long-term OMI trend over remote US regions shows a rising summertime NO2 background from 2010 to 2019 potentially attributable to wildfires.A new method for the synthesis of glycyrrhizic acid (GA) conjugates with S-benzyl-L-cysteine using 1-ethyl-3-(3-dimethylaminoproopyl)carbodiimide is proposed. It is established that 3-O-2-O-[N-(β-D-glucopyranosyluronyl)-L-cysteine-S-benzyl]-N-(β-D-glucopyranosyluronyl)-L-cysteine-S-benzyl-(3β,20β)-11-oxo-30-(N-carbonyl-L-cysteine-S-benzyl)-30-norolean-12-ene is superior to GA in inhibiting the accumulation of HIV-I virus-specific protein p24 (viral antigen) in MT-4 cell culture (IC50 3 μg/mL, SI 90) and is 50 - 55 times less toxic to cells than azidothymidine.Urban areas and their vertical characteristics have a manifold and far-reaching impact on our environment. However, openly accessible information at high spatial resolution is still missing at large for complete countries or regions. In this study, we combined Sentinel-1A/B and Sentinel-2A/B time series to map building heights for entire Germany on a 10 m grid resolving built-up structures in rural and urban contexts. We utilized information from the spectral/polarization, temporal and spatial dimensions by combining band-wise temporal aggregation statistics with morphological metrics. We trained machine learning regression models with highly accurate building height information from several 3D building models. The novelty of this method lies in the very fine resolution yet large spatial extent to which it can be applied, as well as in the use of building shadows in optical imagery. Results indicate that both radar-only and optical-only models can be used to predict building height, but the synergistic combination of both data sources leads to superior results. When testing the model against independent datasets, very consistent performance was achieved (frequency-weighted RMSE of 2.9 m to 3.5 m), which suggests that the prediction of the most frequently occurring buildings was robust. The average building height varies considerably across Germany with lower buildings in Eastern and South-Eastern Germany and taller ones along the highly urbanized areas in Western Germany. We emphasize the straightforward applicability of this approach on the national scale. It mostly relies on freely available satellite imagery and open source software, which potentially permit frequent update cycles and cost-effective mapping that may be relevant for a plethora of different applications, e.g. physical analysis of structural features or mapping society's resource usage.
Homepage: https://www.selleckchem.com/products/KU-55933.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team