Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Cadmium (Cd) is a hazardous heavy metal, toxic to our ecosystem even at low concentrations. Cd stress negatively affects plant growth and development by triggering oxidative stress. Limited information is available on the role of iron (Fe) in ameliorating Cd stress tolerance in legumes. This study assessed the effect of Cd stress in two lentil (Lens culinaris Medik.) varieties differing in seed Fe concentration (L4717 (Fe-biofortified) and JL3) under controlled conditions. Six biochemical traits, five growth parameters, and Cd uptake were recorded at the seedling stage (21 days after sowing) in the studied genotypes grown under controlled conditions at two levels (100 μM and 200 μM) of cadmium chloride (CdCl2). The studied traits revealed significant genotype, treatment, and genotype × treatment interactions. Cd-induced oxidative damage led to the accumulation of hydrogen peroxide (H2O2) and malondialdehyde in both genotypes. JL3 accumulated 77.1% more H2O2 and 75% more lipid peroxidation products than L4717 at the high Cd level. Antioxidant enzyme activities increased in response to Cd stress, with significant genotype, treatment, and genotype × treatment interactions (p less then 0.01). L4717 had remarkably higher catalase (40.5%), peroxidase (43.9%), superoxide dismutase (31.7%), and glutathione reductase (47.3%) activities than JL3 under high Cd conditions. In addition, L4717 sustained better growth in terms of fresh weight and dry weight than JL3 under stress. JL3 exhibited high Cd uptake (14.87 mg g-1 fresh weight) compared to L4717 (7.32 mg g-1 fresh weight). The study concluded that the Fe-biofortified lentil genotype L4717 exhibited Cd tolerance by inciting an efficient antioxidative response to Cd toxicity. Further studies are required to elucidate the possibility of seed Fe content as a surrogacy trait for Cd tolerance.A healthy soil is a healthy ecosystem because humans, animals, plants, and water highly depend upon it. Soil pollution by potentially toxic elements (PTEs) is a serious concern for humankind. The study is aimed at (i) assessing the concentrations of PTEs in soils under a long-term heavily industrialized region for coal and textiles, (ii) modeling and mapping the spatial and vertical distributions of PTEs using a GIS-based ordinary kriging technique, and (iii) identifying the possible sources of these PTEs in the Jizerské Mountains (Jizera Mts.) using a positive matrix factorization (PMF) model. Four hundred and forty-two (442) soil samples were analyzed by applying the aqua regia method. To assess the PTE contents, the level of pollution, and the distribution pattern in soil, the contamination factor (CF) and the pollution load index load (PLI) were applied. ArcGIS-based ordinary kriging interpolation was used for the spatial analysis of PTEs. The results of the analysis revealed that the variation in the coefficient (CV) of PTEs in the organic soil was highest in Cr (96.36%), followed by Cu (54.94%) and Pb (49.40%). SHP099 On the other hand, the mineral soil had Cu (96.88%), Cr (66.70%), and Pb (64.48%) as the highest in CV. The PTEs in both the organic soil and the mineral soil revealed a high heterogeneous variability. Though the study area lies within the "Black Triangle", which is a historic industrial site in Central Europe, this result did not show a substantial influence of the contamination of PTEs in the area. In spite of the rate of pollution in this area being very low based on the findings, there may be a need for intermittent assessment of the soil. This helps to curtail any excessive accumulation and escalation in future. The results may serve as baseline information for pollution assessment. It might support policy-developers in sustainable farming and forestry for the health of an ecosystem towards food security, forest safety, as well as animal and human welfare.Pesticide drift was reported in many international studies, but rarely studied in Taiwan. We conducted a study in a rural region of Taiwan to examine the associations between pesticides in house dust and nearby agricultural areas using geographic information system (GIS). A questionnaire regarding home characteristics and pesticide use, and indoor and outdoor dust samples were collected from 47 rural homes. Dust samples were analyzed for six pesticides, and agricultural land data for GIS analysis were retrieved from a national website. All but prallethrin were frequently detected from indoor dust samples (>50%), and the maximum concentrations were all below 1000 ng/g. Detection frequencies and concentrations of pesticides in outdoor dust samples were even lower than that in indoor dust samples. Only "work involving pesticides" in the questionnaire was significantly associated with four pesticides in house dust (p 0.33, p less then 0.05), and chlorpyrifos was found to be associated with abandoned cultivation area, suggesting the occurrence of pesticide drift. Despite the low levels of pesticides in house dust, residents in the rural region should be cautious of pesticide drift from nearby active or abandoned farmlands.The accumulation and distribution of microplastics (MPs) in agricultural soils, including rice fields, is well studied. However, only a few studies have investigated the uptake of MPs by rice plants and the consequential toxic effects of MPs under solid-phase culture conditions. Hence, in this study, we explored the effects of different concentrations of polystyrene MPs (PS-MPs, with a size of 200 nm) on rice seed germination, root growth, antioxidant enzyme activity, and transcriptome. PS-MPs exhibited no significant effect on the germination of rice seeds (p > 0.05). link2 However, PS-MPs significantly promoted root length (10 mg L-1; p less then 0.05), and significantly reduced antioxidant enzyme activity (1000 mg L-1; p less then 0.05). Staining with 3,3-diaminobenzidine and nitrotetrazolium blue chloride further revealed significant accumulation of reactive oxygen species in the roots of rice treated with PS-MPs. In addition, transcriptome data analysis revealed that PS-MPs induce the expression of genes related to antioxidant enzyme activity in plant roots. Specifically, genes related to flavonoid and flavonol biosynthesis were upregulated, whereas those involved in linolenic acid and nitrogen metabolism were downregulated. These results enhance our understanding of the responses of agricultural crops to MP toxicity.Despite the toxicity and health risk characteristics of formaldehyde (FA), it is currently used as a cytological fixative and the definition of safe exposure levels is still a matter of debate. link3 Our aim was to investigate the alterations in both oxidative and inflammatory status in a hospital working population. The 68 workers recruited wore a personal air-FA passive sampler, provided a urine sample to measure 15-F2t-Isoprostane (15-F2t-IsoP) and malondialdehyde (MDA) and a blood specimen to measure tumour necrosis factor α (TNFα). Subjects were also genotyped for GSTT1 (Presence/Absence), GSTM1 (Presence/Absence), CYP1A1 exon 7 (A > G), and IL6 (-174, G > C). Workers were ex post split into formalin-employers (57.3 μg/m3) and non-employers (13.5 μg/m3). In the formalin-employers group we assessed significantly higher levels of 15-F2t-IsoP, MDA and TNFα ( less then 0.001) in comparison to the non-employers group. The air-FA levels turned out to be positively correlated with 15-F2t-IsoP (p = 0.027) and MDA (p less then 0.001). In the formalin-employers group the MDA level was significantly higher in GSTT1 Null (p = 0.038), GSTM1 Null (p = 0.031), and CYP1A1 exon 7 mutation carrier (p = 0.008) workers, compared to the wild type subjects. This study confirms the role of FA in biomolecular profiles alterations, highlighting how low occupational exposure can also result in measurable biological outcomes.Pesticides released to the environment can indirectly affect target and non-target species in ways that are often contrary to their intended use. Such indirect effects are mediated through direct impacts on other species or the physical environment and depend on ecological mechanisms and species interactions. Typical mechanisms are the release of herbivores from predation and release from competition among species with similar niches. Application of insecticides to agriculture often results in subsequent pest outbreaks due to the elimination of natural enemies. The loss of floristic diversity and food resources that result from herbicide applications can reduce populations of pollinators and natural enemies of crop pests. In aquatic ecosystems, insecticides and fungicides often induce algae blooms as the chemicals reduce grazing by zooplankton and benthic herbivores. Increases in periphyton biomass typically result in the replacement of arthropods with more tolerant species such as snails, worms and tadpoles. Fungicides and systemic insecticides also reduce nutrient recycling by impairing the ability of detritivorous arthropods. Residues of herbicides can reduce the biomass of macrophytes in ponds and wetlands, indirectly affecting the protection and breeding of predatory insects in that environment. The direct impacts of pesticides in the environment are therefore either amplified or compensated by their indirect effects.The growth of industrialization has led to an increase in the production of highly contaminated wastewater. Industrial wastewater contains highly complex compounds varying in characteristics and required to be treated before its discharge into a water medium from various industries. However, the efficiency of the treated wastewater from the toxicity reduction perspective is unclear. In order to overcome this barrier, toxicity assessment of the industrial wastewater before and after treatment is crucial. Thus, in this study, a scientometric analysis has been performed on the toxicity assessment of industrial wastewater and sludges, which have been reported in the literature. Web of Science (WoS) core collection database has been considered the main database to execute this analysis. Via the search of pre-researched keywords, a total number of 1038 documents were collected, which have been published from 1951 to 2020. Via CiteSpace software and WoS analyser, these documents went under analysis regarding some of the scientometry criteria, and the detailed results obtained are provided in this study. The total number of published documents on this topic is relatively low during such a long period of time. In conclusion, the need for more detailed contributions among the scientific and industrial communities has been felt.Mag@silica-Ag composite has a high sorption ability for I- in aqueous solution due to its high surface area and strong affinity for the studied anion. The material adsorbed I- rapidly during the initial contact time (in 45 min, η = 80%) and reached adsorption equilibrium after 2 h. Moreover, mag@silica-Ag proved to selectively remove I- from a mixture of Cl-, NO3- and I-. The adsorption behavior fitted the Langmuir isotherm perfectly and the pseudo-second-order kinetic model. Based on the Langmuir isotherm, the maximum adsorption capacity of mag@silica-Ag was 0.82 mmol/g, which is significantly higher than previously developed adsorbents. This study introduces a practical application of a high-capacity adsorbent in removing radioactive I- from wastewaters.
Homepage: https://www.selleckchem.com/products/shp099-dihydrochloride.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team