NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

The actual Turtle along with the Hare: Guinea Earthworm, Polio as well as the Race for you to Removal.
Multi-beam laser Doppler vibrometers (MB-LDVs) have an advantage over scanning single-beam laser Doppler vibrometers (LDVs) due to the reduction in measurement time and their ability to measure non-stationary and transient events. However, the number of simultaneously interrogated points in current MB-LDVs is limited due to the complexity of the electronic hardware, which increases with the number of measurement channels. Recent developments of high-speed line-scan CMOS cameras suggest that their use in MB-LDVs can reduce the hardware complexity and increase the number of measurement channels. We developed a MB-LDV based on a digital line-scan CMOS camera that simultaneously measures vibrations on a linear array of 99 points. The experimental setup and performance of the developed MB-LDV are discussed in this paper.Narrowband resonance plays an important role in many optical applications, especially for the development of wavelength-selective properties and enhanced light-matter interaction. In this paper, we demonstrate metal-insulator-metal (MIM) waveguide gratings, which exhibit guided-mode resonance (GMR) with reduced bandwidth in mid-infrared absorption and thermal emission. Our fabricated MIM waveguide grating consists of a copper substrate, a lossless ZnSe film, and a top gold stripe grating. Our measurements reveal strong GMRs with a bandwidth of 1.29% of the central wavelength in both mid-infrared absorption and thermal emission spectra. By varying structural parameters of the MIM waveguide grating, strong absorptions and thermal emissions of GMRs are observed and tuned within the 3-5 µm wavelength range. These results manifest the great potential of engineering infrared properties by using GMR and could be useful for spectral control in a variety of infrared devices.The wide field of view (FOV) of traditional star sensor optical systems restricts the ability to suppress atmospheric background. An optical imaging system for an all-time star sensor based on FOV gated technology is proposed. In this system, a wide FOV telescope is used to observe a large sky area containing multiple stars. A microlens and microshutter array is employed to subdivide the wide FOV and gate a narrow FOV to suppress atmospheric background radiation. Assisted by a common imaging lens, each set of microlens and microshutter elements corresponds to a FOV gated imaging channel. With the rapid switching of gated FOV, multiple stellar images are obtained on a common detection during daytime. As an example, a FOV gated optical imaging system with 0.4° gated FOV and 61 imaging channels is designed. In addition, a simplified prototype is developed, and a preliminary experiment of FOV gated imaging is performed near the ground. The results verify the capability of multiple stellar detections during daytime. The proposed optical imaging system has a strong capability of suppressing atmospheric background radiation and provides sufficient FOV gated imaging channels to enhance the probability of detecting multiple stars. It provides an effective technical way to develop all-time star sensors based on star pattern recognition and enables a completely autonomous attitude determination possible for platforms inside the atmosphere during daytime.A point diffraction interferometer based on silicon nitride waveguide (WG-PDI), adopting a silicon nitride waveguide spherical wave source (WG-SWS) with Si substrate and SiO2 cladding, is proposed for spherical surface testing. The WG-SWS is used to overcome the drawbacks of the existing spherical wave sources, which can generate high accuracy and high numerical aperture spherical reference wave. In this paper, the theory of the WG-PDI is described, and the possible errors introduced by the device are analyzed. In addition, the lateral deviation between the curvature center of the test wave and the curvature center of the reference wave cannot be eliminated in the reflected configuration of the pinhole diffraction interferometer. After analyzing the influence of the systematic error introduced by the lateral deviation, the semi-reflective film was coated on the output facet of the waveguide spherical wave source to realize point diffraction interference without lateral deviation. Finally, the surface error of a spherical surface was measured by WG-PDI. The experimental results agree well with those measured by the ZYGO interferometer.We propose a method to construct a compact dual focal-plane optical see-through near-eye display using diffractive waveguides and multiple lenses. A virtual image from a display device is projected into a three-grating waveguide using an objective lens, and a virtual image can be shown at a far distance with an extended eye box. One negative lens is employed to reduce the focus distance of the virtual image, and a corresponding positive lens is used to compensate for the distortion and accommodation errors. Thus, not only can a virtual image with a near distance be achieved, but also a virtual plane with a further distance can be generated by introducing another projection module and waveguide. Only two waveguides and two pieces of lenses are used in front of one eye to obtain a lightweight outlook. To verify the proposed method, a proof-of-concept prototype was developed to provide vivid virtual images at different depths in front of the human eye.Source and mask optimization (SMO) is a key technique to guarantee the lithographic fidelity for 14-5 nm technology nodes. The balance between lithography fidelity and computational efficiency is a big issue for SMO. Our earlier works of compressive sensing SMO (CS-SMO) effectively accelerated the SMO procedure by sampling monitoring pixels. However, the imaging fidelity of the results of these methods can be further improved. This paper proposes a novel Bayesian compressive sensing source and mask optimization (BCS-SMO) method, to the best of our knowledge, to achieve the goals of fast SMO and high fidelity patterns simultaneously. The SMO procedure can be achieved by solving as a series of re-weighted l1-norm reconstruction problems, and the weights can be updated in every iteration. The results demonstrate that, with similar computational efficiency, the BCS-SMO method can significantly improve lithographic fidelity over the current CS-SMO method.To deal with a terahertz (THz) super-resolution (SR) algorithm based on a convolutional neural network (CNN) without standard training datasets, a complex "zero-shot" SR (CZSSR) reconstruction algorithm is proposed according to the internal image statistics with a five-layer complex CNN model. Instead of relying on pre-training, the proposed method is of sound self-adaptability. Compared with real ZSSR, the peak SNR of CZSSR rose by about 0.94 dB, MSE decreased by 0.042, and SSIM increased by about 40% for the SR result of the measured data. The results show that the CZSSR method can solve the low-resolution problem of a THz imaging system and the shortage of datasets in THz SR based on CNN. Therefore, this research is of great significance for application in the fields of medical imaging and non-destructive detection.We experimentally and numerically propose an approach for implementing spike-based neuromorphic exclusive OR (XOR) operation using a single vertical-cavity semiconductor optical amplifier (VCSOA). https://www.selleckchem.com/products/PD-0325901.html XOR operation is realized based on the neuron-like inhibitory dynamics of the VCSOA subject to dual-polarized pulsed optical injections. The inhibitory dynamics based on the polarization-mode competition effect are analyzed, and the inhibitory response can be obtained in a suitable range of wavelength detuning. Here, all input and output bits are represented by spikes that are compatible with the photonic spiking neural network. The experimental and numerical results show that XOR operation can be realized in two polarization modes by adjusting the time offset in the inhibitory window and setting defined reference thresholds. In addition, the influences of delay time and input intensity ratio on XOR operation are studied experimentally. This scheme is energy efficient because VCSOA neuromorphic photonics computing and information processing.Waveguide near-eye displays (NEDs) consist of a planar waveguide combiner and a coupling-in projection system. A two-dimensional geometrical waveguide (TDGW) can achieve an ultra-thin, large exit pupil diameter (XPD), wide-angle NED. The design method of a single-layer TDGW is presented and discussed in detail in this paper. A high-precision processing technology that can effectively guarantee the parallelism accuracy is also presented. A miniature coupling-in projection optics is designed with a catadioptric structure and integrated with the waveguide accordingly. Finally, a TDGW with a thickness of 1.75 mm is designed and analyzed. The results show that the stray light over the normal light is less than 0.5%, and the illuminance uniformity is well optimized. The field of view is up to 55°, and the XPD exceeds 12mm×10mm at an eye relief (ERF) of 18 mm. A proof-of-concept prototype was fabricated and demonstrated.The depth-gating capacity of a spatially quasi-incoherent imaging interferometer is investigated in relation to the 3D correlation properties of diffraction field laser speckles. The system exploits a phase-stepped imaging Michelson-type interferometer in which spatially quasi-incoherent illumination is generated by passing an unexpanded laser beam through a rotating diffuser. Numerical simulations and optical experiments both verify that the depth-gating capacity of the imaging interferometer scales as λ/2NAp2, where λ is the wavelength of the laser and NAp is the numerical aperture of the illumination. For a set depth gate of 150 µm, the depth-gating capacity of the interferometer is demonstrated by scanning a standard USAF target through the measurement volume. The results obtained show that an imaging tool of this kind is expected to provide useful capabilities for imaging through disturbing media and where a single wavelength is required.We numerically and experimentally demonstrate a series of multilayer metamaterial filters in the terahertz region. The designed structure consists of multiple metal-polyimide composite layers and cyclic olefin copolymer layers. The transmission spectra of the filters are characterized by terahertz time-domain spectroscopy, and the measured results agree well with simulations. In addition, the mechanism of the multilayer structure is theoretically studied by a thin film multibeam interference model. The proposed filters exhibit high efficiency at passband and can be broadly utilized as compact devices in practical applications at terahertz frequencies.Excessive illegal addition of talc in flour has always been a serious food safety issue. To achieve rapid detection of the talc content in flour (TCF) by near-infrared spectroscopy (NIRS), this study used a Fourier transform near-infrared spectrometer technique. The identification of efficient spectral feature wavelength selection (FWS), such as backward interval partial-least-square (BiPLS), competitive adaptive reweighted sampling (CARS), hybrid genetic algorithm (HGA), and BiPLS combined with CARS; BiPLS combined with HGA; and CARS combined with HGA, was also discussed in this paper, and the corresponding partial-least-square regression models were established. Comparing with whole spectrum modeling, the accuracy and efficiency of regressive models were effectively improved using feature wavelengths of TCF selected by the above algorithms. The BiPLS, combined with HGA, had the best modeling performance; the determination coefficient, root-mean-squared error (RMSE), and residual predictive deviation of the validation set were 0.
Here's my website: https://www.selleckchem.com/products/PD-0325901.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.