Notes
![]() ![]() Notes - notes.io |
An indirect competitive enzyme-linked immunosorbent assay based on a monoclonal antibody from hapten1 was developed and exhibited limits of detection as low as 0.73-3.29 μg/kg for four CPCs in oils and with insignificant cross-reactivities for other eight vanillin alkaloids, which have been never achieved in previous reports.Herein, a method for synthesizing and utilizing DNA dendrons to deliver biomolecules to living cells is reported. Inspired by high-density nucleic acid nanostructures, such as spherical nucleic acids, we hypothesized that small clusters of nucleic acids, in the form of DNA dendrons, could be conjugated to biomolecules and facilitate their cellular uptake. We show that DNA dendrons are internalized by 90% of dendritic cells after just 1 h of treatment, with a >20-fold increase in DNA delivery per cell compared with their linear counterparts. This effect is due to the interaction of the DNA dendrons with scavenger receptor-A on cell surfaces, which results in their rapid endocytosis. Moreover, when conjugated to peptides at a single attachment site, dendrons enhance the cellular delivery and activity of both the model ovalbumin 1 peptide and the therapeutically relevant thymosin alpha 1 peptide. These findings show that high-density, multivalent DNA ligands play a significant role in dictating cellular uptake of biomolecules and consequently will expand the scope of deliverable biomolecules to cells. Indeed, DNA dendrons are poised to become agents for the cellular delivery of many molecular and nanoscale materials.Biotin is a common functional handle for bioconjugation to proteins and DNA, but its uses are limited to protein-containing conjugation partners such as streptavidin and derivatives thereof. Recently, oxaziridine reagents were developed that selectively conjugate the thioether of methionines on the surface of proteins, a method termed redox-activated chemical tagging (ReACT). These reagents generate sulfimide linkages that range in stability depending on the solvent accessibility and substitutions on the oxaziridine. Here we show that oxaziridine reagents react rapidly with the thioether in biotin to produce sulfimide products that are stable for more than 10 d at 37 °C. This method, which we call biotin redox-activated chemical tagging (BioReACT), expands the utility of biotin labeling and enables a predictable and stable chemical conjugation to biomolecules without the need to screen for a suitable methionine conjugation site. We demonstrate the versatility of this approach by producing a fluorescently labeled antibody, an antibody-drug conjugate, and a small molecule-conjugated oligonucleotide. We anticipate that BioReACT will be useful to rapidly introduce biorthogonal handles into biomolecules using biotin, a functional group that is widespread and straightforward to install.PCM-102 is a new organophosphine metal-organic framework (MOF) featuring diphosphine pockets that consist of pairs of offset trans-oriented P(III) donors. Postsynthetic addition of M(I) salts (M = Cu, Ag, Au) to PCM-102 induces single-crystal to single-crystal transformations and the formation of trans-[P2M]+ solid-state complexes (where P = framework-based triarylphosphines). While the unmetalated PCM-102 has low porosity, the addition of secondary Lewis acids to install rigid P-M-P pillars is shown to dramatically increase both stability and selective gas uptake properties, with N2 Brunauer-Emmett-Teller surface areas >1500 m2 g-1. The Ag(I) analogue can also be obtained via a simple, one-pot peri-synthetic route and is an ideal sacrificial precursor for materials with mixed bimetallic MA/MB pillars via postsynthetic, solvent-assisted metal exchange. Notably, the M-PCM-102 family of MOFs contain periodic trans-[P2M]+ sites that are free of counter anions, unlike traditional analogous molecular complexes, since the precursor PCM-102 MOF is monoanionic, enabling access to charge-neutral metal-pillared materials. Four M-PCM-102 materials were evaluated for the separation of C2 hydrocarbons. The separation performance was found to be tunable based on the metal(s) incorporated, and density functional theory was employed to elucidate the nature of the unusual observed sorption preference, C2H2 > C2H6 > C2H4.Self-immolative polymers have significant potential for applications such as drug or gene delivery. However, to realize this potential, such materials need to be customized to respond to specific variations in biological conditions. In this work, we investigated the design of new star-shaped self-immolative poly(ethyl glyoxylate)s (PEtGs) and their incorporation into responsive nanoparticles. PEtGs are a subclass of stimulus-responsive self-immolative polymers, which can be combined with different stimuli-responsive functionalities. Two different tetrathiol initiators were used for the polymerization in combination with a variety of potential pH-responsive end-caps, yielding a library of star PEtG polymers which were responsive to pH. Characterization of the depolymerization behavior of the polymers showed that the depolymerization rate was controlled by the end caps rather than the architecture of the polymer. A selection of the star polymers were modified with amines to allow introduction of charge-shifting properties. It was shown that pH-responsive nanoparticles could be prepared from these modified polymers and they demonstrated pH-dependent particle disruption. The pH responsiveness of these particles was studied by dynamic light scattering and 1H nuclear magnetic resonance spectroscopy.A new three-layered film was fabricated on magnesium (Mg) alloy via electroplating to guard against corrosion in a chloride aqueous environment, which consisted of an underlying double-layered zinc/copper (Zn/Cu) and a top aluminum-zirconium (Al-Zr) layer. The Zn/Cu underlayers not only impeded the galvanic corrosion between the Al-Zr coating and Mg alloy but also improved the adhesive ability between the substrate and the upper Al-Zr layer. Herein, we discussed the nucleus sizes of Al-Zr coatings at the stage of nucleation carried out with different contents of ZrCl4 in AlCl3-1-butyl-3-methylimidazolium chloride ionic liquid. The sandwichlike three-layered Zn/Cu/Al-Zr coatings were systematically investigated by surface morphology, phase structure, hardness, anticorrosion performances, and first-principles calculations. The corrosion current density declined from 1.461 × 10-3 A·cm-2 of bare Mg to 4.140 × 10-7 A·cm-2 of the Zn/Cu/Al-Zr3 sample. Neutral salt spray testing demonstrated that the Zn/Cu/Al-Zr3 sample showed no evident signs of corrosion after 6 days of exposure. The enhancement of the corrosion protection property was related to the fact that the application of the Cu layer changed the corrosion direction from initial longitudinal corrosion to extended lateral corrosion and the top Al-Zr coating hindered the transmission of aggressive ions. In addition, upon increasing the Zr content in the alloy films, the Fermi energy reduced initially and then increased. The Al-Zr3 alloy with 8.3 atom % Zr showed the lowest Fermi energy (-3.0823 eV), which exhibited the most efficient corrosion protection. These results showed that the prepared three-layered coating provided reliable corrosion protection to Mg alloy and may thus promote its practical applications.Mushroom, as a kind of higher fungus, is a precious homology resource of medicine and foods. In this study, total lipids were extracted from eight wild edible mushrooms and subsequently characterized by ultra-high-performance liquid chromatography-Quadrupole-Exactive Orbitrap mass spectrometry. 20 lipid classes and 173 molecular species were identified and quantified. Lipid molecules and their concentrations in Boletus speciosus, Boletus bainiugan, and Tricholoma matsutake exhibited significantly different behaviors compared with the remaining mushrooms. Hierarchical cluster analysis revealed that lipid profiles of B. bainiugan were most similar to B. speciosus followed by T. matsutake, Canthar-ellus cibarius, Sarcodon aspratu, Termitomyces eurrhizus, Laccaria laccata, and Thelephora ganbajun. In addition, several differential lipids can be considered as potential biomarkers to distinguish different mushroom species, for instance, lysophosphatidylethanolamine (161) and ceramide non-hydroxy fatty acid-dihydrosphingosine (d230-100). This study provided a new perspective to discriminate the mushroom species from the perspective of lipidomics.Thanks to a homemade dynamic vacuum system, fully crystallized VO2 (M) is successfully synthesized in a merged step of vanadyl ethylene glycolate (VEG) decomposition and crystallization of VO2 at high temperatures (>500 °C). During the whole process, vanadium valence (+4) is well maintained, and VEG microstructure plays an important role in the end-product size and shape. Finally, the suggested route appears well suitable for the mass production of VO2 nanoparticles.Using molecular dynamics, we address uric acid (UA) replacement by a model small-molecule inhibitor, allopurinol (AP), from its aggregated cluster in a columnar fashion. Experimentally it has been affirmed that AP is efficient in preventing UA-mediated renal stone formation. However, no study has presented the underlying mechanisms yet. learn more Hence, a theoretical approach is presented for mapping the AP, which binds to melamine (MM) and UA clusters. In AP's presence, the higher-order cluster of UA molecules turns into a lower-order cluster, which "drags" fewer MM to them. Consequently, the MM-UA composite structure gets reduced. It is worth noting that UA-AP and AP-MM hydrogen-bonding interactions often play an essential role in reducing the UA-MM cluster size. Interestingly, an AP around UA makes a pillar-like structure, confirmed by defining the point-plane distribution function. The decomposition of the preferential interaction by Kirkwood-Buff integral into different angles like 0°-30°, 30°-60°, and 60°-90° firmly establishes the phenomenon mentioned above. However, the structural order for such π-stacking interactions between AP and UA molecules is not hierarchical but rather more spontaneous. The driving force behind UA-AP-MM composite formation is the favorable complexation energy that can be inferred by computing pairwise binding free energies for all possible combinations. Performing enhanced sampling and quantum calculations further confirms the evidence for UA degradation.Tire tread wear particles (TWP) are increasingly recognized as a global pollutant of surface waters, but their impact on biota in receiving waters is rarely addressed. In the developed U.S. Pacific Northwest, acute mortality of adult coho salmon (Oncorhynchus kisutch) follows rain events and is correlated with roadway density. Roadway runoff experimentally triggers behavioral symptoms and associated changes in blood indicative of cardiorespiratory distress prior to death. Closely related chum salmon (O. keta) lack an equivalent response. Acute mortality of juvenile coho was recently experimentally linked to a transformation product of a tire-derived chemical. We evaluated whether TWP leachate is sufficient to trigger the acute mortality syndrome in adult coho salmon. We characterized the acute response of adult coho and chum salmon to TWP leachate (survival, behavior, blood physiology) and compared it with that caused by roadway runoff. TWP leachate was acutely lethal to coho at concentrations similar to roadway runoff, with the same behaviors and blood parameters impacted.
Here's my website: https://www.selleckchem.com/EGFR(HER).html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team