NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Determining understanding and use regarding vision accidents first-aid, using awareness in regards to the significance of early on administration amongst basic inhabitants inside Asser Region, 2020.
The results illustrated that, compared to reference target-based model, the Lambert-Beckman model can efficiently explain and correct the incident angle effect with specular reflection in HSL. In addition, it was found that the specular fraction Ks, which is reduced with the increasing of reflectance, is dominating the incident angle effect in the whole band, while roughness m keeps stable at different wavelengths. Thus, this research will provide notably advanced insight into correcting the echo intensity of HSL.Light-based additive manufacturing techniques enable a rapid transition from object design to production. In these approaches, a 3D object is typically built by successive polymerization of 2D layers in a photocurable resin. A recently demonstrated technique, however, uses tomographic dose patterning to establish a 3D light dose distribution within a cylindrical glass vial of photoresin. Lensing distortion from the cylindrical vial is currently mitigated by either an index matching bath around the print volume or a cylindrical lens. In this work, we show that these hardware approaches to distortion correction are unnecessary. Instead, we demonstrate how the lensing effect can be computationally corrected by resampling the parallel-beam radon transform into an aberrated geometry. We also demonstrate a more general application of our computational approach by correcting for non-telecentricity inherent in most optical projection systems. We expect that our results will underpin a more simple and flexible class of tomographic 3D printers where deviations from the assumed parallel-beam projection geometry are rectified computationally.Superconducting nanowire single-photon detectors (SNSPDs) have attracted remarkable interest for visible and near-infrared single-photon detection due to their outstanding performance. However, conventional SNSPDs are generally used as binary photon-counting detectors. Another important characteristic of light, i.e., polarization, which can provide additional information of the object, has not been resolved using the standalone SNSPD. In this work, we present a first prototype of the polarimeter based on a four-pixel superconducting nanowire array, capable of resolving the polarization state of linearly-polarized light at the single-photon level. The detector array design is based on a division of focal plane configuration in which the orientation of each nanowire division (pixel) is offset by 45°. Each single nanowire pixel operates as a combination of a photon detector and almost linear polarization filter, with an average polarization extinction ratio of ∼10. The total system detection efficiency of the array is ∼1% at a total dark count rate of 680 cps, with a timing jitter of 126 ps, when the detector array is free-space coupled and illuminated with 1550-nm photons. The mean errors of the measured angle of polarization and degree of linear polarization were about -3° and 0.12, respectively. Furthermore, we successfully demonstrated polarization imaging at low-light level using the proposed detector. Our results pave the way for the development of a single-photon sensitive, fast, and large-scale integrated polarization polarimeter or imager. Such detector may find promising application in photon-starved polarization resolving and imaging with high spatial and temporal resolution.Lens aberrations degrade the image quality and limit the viewing angle of light-field displays. In the present study, an approach to aberration reduction based on a pre-correction convolutional neural network (CNN) is demonstrated. The pre-correction CNN is employed to transform the elemental image array (EIA) generated by a virtual camera array into a pre-corrected EIA (PEIA). The pre-correction CNN is built and trained based on the aberrations of the lens array. The resulting PEIA, rather than the EIA, is presented on the liquid crystal display. Via the optical transformation of the lens array, higher quality 3D images are obtained. MLN2480 purchase The validity of the proposed method is confirmed through simulations and optical experiments. A 70-degree viewing angle light field display with the improved image quality is demonstrated.Many applications ranging from nonlinear optics to material processing would benefit from pulsed ultrashort (quasi-)non-diffracting Gauss-Bessel beams (GBBs). Here we demonstrate a straightforward yet efficient method for generating such zeroth- and first-order GBBs using a single reflective spatial light modulator. Even in the sub-8-fs range there are no noticeable consequences for the measured pulse duration. The only effect is a weak "coloring" of the outer-lying satellite rings of the beams due to the spectrum spanning over more than 300 nm. The obtained beams have diffraction half-angles below 40 μrad and reach propagation distances in excess of 1.5 m.The illumination system design for high numerical aperture (NA) anamorphic objectives is a key challenge for extreme ultraviolet lithography. In this paper, a reverse design method of the off-axis mixed-conic-surface-type relay system and an automatic arrangement method of field facets are proposed to design a high NA anamorphic illumination system. The two off-axis relay mirrors are fitted into different conic surfaces based on the conjugation of the mask plane and field facet and that of the illumination exit pupil and pupil facet. To eliminate ray obscuration between neighboring field facets, the field facets are automatically arranged according to the distances that are determined by the relative tilt angles of neighboring field facets under the current illumination mode. The proposed methods are applied in the design of an illumination system matching the NA0.60 anamorphic objective. Simulation results show that the uniformity of the scanning energy distribution can reach 99% on the mask plane under different illumination modes.Free space optic (FSO) is a type of optical communication where the signal is transmitted in free space instead of fiber cables. Because of this, the signal is subject to different types of impairments that affect its quality. Predicting these impairments help in automatic system diagnosis and building adaptive optical networks. Using machine learning for predicting the signal impairments in optical networks has been extensively covered during the past few years. However, for FSO links, the work is still in its infancy. In this paper, we consider predicting three channel parameters in FSO links that are related to amplified spontaneous emission (ASE) noise, turbulence, and pointing errors. To the best of authors knowledge, this work is the first to consider predicting FSO channel parameters under the effect of more than one impairment. First, we report the performance of predicting the FSO parameters using asynchronous amplitude histogram (AAH) and asynchronous delay-tap sampling (ADTS) histogram features. The results show that ADTS histogram features provide better prediction accuracy. Second, we compare the performance of support vector machine (SVM) regressor and convolutional neural network (CNN) regressor using ADTS histogram features. The results show that CNN regressor outperforms SVM regressor for some cases, while for other cases they have similar performance. Finally, we investigate the capability of CNN regressor for predicting the channel parameters for three different transmission speeds. The results show that the CNN regressor has good performance for predicting the OSNR parameter regardless of the value of transmission speed. However, for the turbulence and pointing errors, the prediction under low speed transmission is more accurate than under high speed transmission.We present a hybrid dual-gain integrated external cavity laser with full C-band wavelength tunability. Two parallel reflective semiconductor optical amplifier gain channels are combined by a Y-branch in the Si3N4 photonic circuit to increase the optical gain. A Vernier ring filter is integrated in the Si3N4 photonic circuit to select a single longitudinal mode and meanwhile reduce the laser linewidth. The side-mode suppression ratio is ∼67 dB with a pump current of 75 mA. The linewidth of the unpackaged laser is 6.6 kHz under on-chip output power of 23.5 mW. The dual-gain operation of the laser gives higher output power and narrower linewidth compared to the single gain operation. It is promising for applications in optical communications and light detection and ranging systems.A novel high-fabrication-tolerance mode demultiplexer (MD) based on an S-bend waveguide is designed, which is used to split TE1 mode and TE0 mode, and convert the TE1 mode to TE0 mode. Based on the MD, a polarization-rotator-splitter (PRS) is demonstrated. The transmission losses of the fabricated PRS are lower than 0.5 dB and 0.6 dB for TE0 mode and TM0 mode, respectively, in the wavelength span of 1520-1630 nm. And the corresponding polarization extinction ratios are larger than 19.5 dB and 17.6 dB, respectively. This MD has the most compact size comparing with other experimentally demonstrated MDs used in PRS.We demonstrate a simple and ultra-sensitive refractive index (RI) sensor using a hollow-core silica tube (HCST) sandwiched between an up-taper and a down-taper in single mode fibers (SMF). According to our theoretical analysis, the interference spectrum comes from a combination of a three-beam multi-mode interference and anti-resonance effects. RI sensing will affect the mode interference. By demodulating the fringe contrast of the interference spectra, an ultrahigh sensitivity of -120.18 dB/RIU is achieved, implying a RI resolution of ∼ 8×10-6 in the RI range from 1.35 to 1.43. What's more, the sensor has great temperature insensitivity of -0.0085 dB/°C, indicating an extremely low cross sensitivity of 7×10-5 RIU/°C, which further benefits its practical application. The proposed configuration does not require special fiber or fabrication technique. In addition, the sensor's other merits such as simple and compact structure and ease offabrication offer the potential in biochemical sensing applications.We report an optical method for particle velocity measurement that is suitable for the measurement of particle velocities within dense particle-laden flows with high spatial resolution. The technique is based on particle shadow velocimetry with the use of a long-distance microscopic lens for images collection. The narrow depth of field of the lens allows particles within the focal plane to have much higher pattern intensities than those outside it on the collected images. Data processing was then employed to remove particles from outside the focal plane based on the gradient of the signal and a threshold. Following this, particle velocity was calculated from two successive images in the usual way. The technique was successfully demonstrated in a free-falling particle curtain with volume fractions in the four-way coupling regime of near-spherical micro-particles falling under gravity. The method was successfully employed to measure the transverse velocity profile through the curtain, which is the first time that such a measurement has been performed. Other highly-fidelity experimental data, which is also well suited to model development and validation, include the particle mass flow rate, curtain thickness and opacity.
Website: https://www.selleckchem.com/products/mln2480.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.