Notes
![]() ![]() Notes - notes.io |
Childhood obesity is a costly burden in most regions with relevant and adverse long-term health consequences in adult life. Several studies have associated excessive body weight with a specific profile of gut microbiota. Different factors related to fecal microorganism abundance seem to contribute to childhood obesity, such as gestational weight gain, perinatal diet, antibiotic administration to the mother and/or child, birth delivery, and feeding patterns, among others. This review reports and discusses diverse factors that affect the infant intestinal microbiota with putative or possible implications on the increase of the obesity childhood rates as well as microbiota shifts associated with excessive body weight in children.Influence of neutering on canine mammary tumorigenesis has been a source of vivid discussion over the last decades. The purpose of this retrospective study was to describe the association between neuter status, tumour size and degree of malignancy in a large population of 625 female dogs with altogether 1459 removed mammary tumours (MTs). MT-bearing dogs were predominantly intact (80.3%) and intact dogs were overrepresented in the tumour population compared to the control group of >19 000 females (p less then .0001). Multiple MT occurred in 340 patients (54.4%) and were significantly more common in intact dogs (57.8% vs. 40.7% spayed). Neutered dogs were not only significantly more likely to have a malignant MT (p less then .0001) but were significantly more often affected by more aggressive tumour subtypes (p less then .0001). Positive correlation between increasing tumour size and increasingly malignant phenotype was slightly stronger in spayed (rs = .217; p = .021) compared to intact (rs = .179; p = .0003) patients. After ovariectomy, progression from benign to malignant occurs in smaller size tumours, as MT ≥2 cm in diameter were malignant in 86.9% of the spayed patients, compared to 62.0% in intact patients (p = .0002). Intact bitches have a higher risk for MTs and tumour multiplicity. MTs in neutered females are more often malignant and belong to more aggressive subtypes compared to MTs in intact dogs. In neutered bitches, histologic progression from benign to malignant and further along the cancer progression continuum occurs at smaller tumour sizes.The Fram Strait plays a crucial role in regulating the heat and sea-ice dynamics in the Arctic. In response to the ongoing global warming, the marine biota of this Arctic gateway is experiencing significant changes with increasing advection of Atlantic species. The footprint of this 'Atlantification' has been identified in isolated observations across the plankton community, but a systematic, multi-decadal perspective on how regional climate change facilitates the invasion of Atlantic species and affects the ecology of the resident species is lacking. Here we evaluate a series of 51 depth-resolved plankton profiles collected in the Fram Strait during seven surveys between 1985 and 2015, using planktonic foraminifera as a proxy for changes in both the pelagic community composition and species vertical habitat depth. The time series reveals a progressive shift towards more Atlantic species, occurring independently of changes in local environmental conditions. We conclude that this trend is reflecting higher production of the Atlantic species in the Nordic Seas, from where they are advected into the Fram Strait. At the same time, we observe the ongoing extensive sea-ice export from the Arctic and associated cooling-induced decline in density and habitat shoaling of the subpolar Turborotalita quinqueloba, whereas the resident Neogloboquadrina pachyderma persists. As a result, the planktonic foraminiferal community and vertical structure in the Fram Strait shift to a new state, driven by both remote forcing of the Atlantic invaders and local climatic changes acting on the resident species. The strong summer export of Arctic sea ice has so far buffered larger plankton transformation. We predict that if the sea-ice export will decrease, the Arctic gateway will experience rapid restructuring of the pelagic community, even in the absence of further warming. Such a large change in the gateway region will likely propagate into the Arctic proper.Here we report for the first time the regio- and diastereoselective [3+2] annulation of a wide range of aliphatic aldimines with alkenes via the activation of an unactivated β-C(sp3 )-H bond by half-sandwich scandium catalysts. This protocol offers a straightforward and atom-efficient route for the synthesis of a new family of multi-substituted aminocyclopentane derivatives from easily accessible aliphatic aldimines and alkenes. The annulation of aldimines with styrenes exclusively afforded the 5-aryl-trans-substituted 1-aminocyclopentane derivatives with excellent diastereoselectivity through the 2,1-insertion of a styrene unit. The annulation of aldimines with aliphatic alkenes selectively gave the 4-alkyl-trans-substituted 1-aminocyclopentane products in a 1,2-insertion fashion. A catalytic amount of an appropriate amine such as adamantylamine (AdNH2 ) or dibenzylamine (Bn2 NH) showed significant effects on the catalyst activity and stereoselectivity.Using artificial hemes for the reconstruction of natural heme proteins represents a fascinating approach to enhance the bioactivity of the latter. We report the synthesis of various metal 5-oxaporphyrinium cations as cofactors, and a cobalt 5-oxaporphyrinium cation was successfully incorporated into the heme-acquisition protein (HasA) secreted by Pseudomonas aeruginosa. We hypothesize that the oxaporphyrinium cation strongly binds to the HasA-specific outer membrane receptor (HasR) due to its cationic charge, which prevents the subsequent acquisition of heme. In fact, the reconstructed HasA inhibited the growth of Pseudomonas aeruginosa and even of multidrug-resistant P. aeruginosa.Chemoresistance and migration represent major obstacles in the therapy of non-small-cell lung cancer (NSCLC), which accounts for approximately 85% of lung cancer patients in clinic. In the present study, we report that the compound C1632 is preferentially distributed in the lung after oral administration in vivo with high bioavailability and limited inhibitory effects on CYP450 isoenzymes. We found that C1632 could simultaneously inhibit the expression of LIN28 and block FGFR1 signalling transduction in NSCLC A549 and A549R cells, resulting in significant decreases in the phosphorylation of focal adhesion kinase and the expression of matrix metalloproteinase-9. Consequently, C1632 effectively inhibited the migration and invasion of A549 and A549R cells. Meanwhile, C1632 significantly suppressed the cell viability and the colony formation of A549 and A549R cells by inhibiting DNA replication and inducing G0/G1 cell cycle arrest. Interestingly, compared with A549 cells, C1632 possesses the same or even better anti-migration and anti-proliferation effects on A549R cells, regardless of drug resistance. In addition, C1632 also displayed the capacity to inhibit the growth of A549R xenograft tumours in mice. Altogether, these findings reveal the potential of C1632 as a promising anti-NSCLC agent, especially for chemotherapy-resistant NSCLC treatment.We report the preparation of potassium acyltrifluoroborates (KATs) from widely available carboxylic acids. Mixed anhydrides of carboxylic acids were prepared using isobutyl chloroformate and transformed to the corresponding KATs using a commercial copper catalyst, B2 (pin)2 , and aqueous KHF2 . This method allows for the facile preparation of aliphatic, aromatic, and amino acid-derived KATs and is compatible with a variety of functional groups including alkenes, esters, halides, nitriles, and protected amines.Aqueous ammonium-ion (NH4 + ) batteries (AAIB) are a recently emerging technology that utilize the abundant electrode resources and the fast diffusion kinetics of NH4 + to deliver an excellent rate performance at a low cost. Although significant progress has been made on AAIBs, the technology is still limited by various challenges. In this Minireview, the most recent advances are comprehensively summarized and discussed, including cathode and anode materials as well as the electrolytes. Finally, a perspective on possible solutions for the current limitations of AAIBs is provided.We reported mesoporosity engineering as a general strategy to promote semihydrogenation selectivity of palladium (Pd)-based nanobundles catalysts. The best mesoporous PdP displayed full conversion, remarkable activity, excellent selectivity, and high stability in semihydrogenation of 1-phenyl-1-propyne, all of which are remarkably better than commercial Lindlar catalysts. Mechanistic investigations ascribed high semihydrogenation selectivity to the continuous crystalline framework and penetrated mesoporous channel of catalysts that weakened the adsorption and interaction capacity of alkenes and thus inhibited over-hydrogenation of alkenes to industrially unfavorable alkanes. Density functional theory calculations further demonstrated that convex crystalline mesoporosity of nanobundles catalysts electronically optimized the coordination environment of Pd active sites and energetically changed hydrogenation trends, resulting in a superior semihydrogenation selectivity to targeted alkenes.Endohedral nitrogen fullerenes have been proposed as building blocks for quantum information processing due to their long spin coherence time. However, addressability of the individual electron spin levels in such a multiplet system of 4 S3/2 has never been achieved because of the molecular isotropy and transition degeneracy among the Zeeman levels. selleck kinase inhibitor Herein, by molecular engineering, we lifted the degeneracy by zero-field splitting effects and made the multiple transitions addressable by a liquid-crystal-assisted method. The endohedral nitrogen fullerene derivatives with rigid addends of spiro structure and large aspect ratios of regioselective bis-addition improve the ordering of the spin ensemble. These samples empower endohedral-fullerene-based qudits, in which the transitions between the 4 electron spin levels were respectively addressed and coherently manipulated. The quantum geometric phase manipulation, which has long been proposed for the advantages in error tolerance and gating speed, was implemented in a pure electron spin system using molecules for the first time.A palladium-catalyzed N-H/B-H double activation of 1,2-dihydro-1,2-benzazaborines proceeded via cycloaddition with vinyl ethylene carbonate to produce polycyclic oxazaborolidines in 31-96 % yield. The key step in this process is the release of molecular hydrogen from a borate intermediate. Using a SPINOL-derived phosphoramidite as a chiral ligand, chiral oxazaborolidines were synthesized in good to high yields with excellent enantioselectivity (up to 95 % ee). The vinyl group of the resulting oxazaborolidine underwent metathesis, Heck reaction, and Wacker oxidation without affecting the oxazaborolidine framework.A family of single-ion lithium conducting polymer electrolytes based on highly delocalized borate groups is reported. The effect of the nature of the substituents on the boron atom on the ionic conductivity of the resultant methacrylic polymers was analyzed. To the best of our knowledge the lithium borate polymers endowed with flexible and electron-withdrawing substituents presents the highest ionic conductivity reported for a lithium single-ion conducting homopolymer (1.65×10-4 S cm-1 at 60 °C). This together with its high lithium transference number t Li + =0.93 and electrochemical stability window of 4.2 V vs Li0 /Li+ show promise for application in lithium batteries. To illustrate this, a lithium borate monomer was integrated into a single-ion gel polymer electrolyte which showed good performance on lithium symmetrical cells ( less then 0.85 V at ±0.2 mA cm-2 for 175 h).
Homepage: https://www.selleckchem.com/products/bi-3231.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team