NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

More rapid atrazine degradation as well as transformed metabolism paths in goat manure helped earth bioremediation.
We consider using optomechanical accelerometers as resonant detectors for ultralight dark matter. As a concrete example, we describe a detector based on a silicon nitride membrane fixed to a beryllium mirror, forming an optical cavity. The use of different materials gives access to forces proportional to baryon (B) and lepton (L) charge, which are believed to be coupling channels for vector dark matter particles ("dark photons"). The cavity meanwhile provides access to quantum-limited displacement measurements. For a centimeter-scale membrane precooled to 10 mK, we argue that sensitivity to vector B-L dark matter can exceed that of the Eöt-Wash experiment in integration times of minutes, over a fractional bandwidth of ∼0.1% near 10 kHz (corresponding to a particle mass of 10^-10  eV/c^2). Our analysis can be translated to alternative systems, such as levitated particles, and suggests the possibility of a new generation of tabletop experiments.The single-particle spectral function of a strongly correlated system is an essential ingredient to describe its dynamics and transport properties. https://www.selleckchem.com/products/ml792.html We develop a method to evaluate exactly the spectral function for a gas of one-dimensional bosons with infinitely strong repulsions valid for any type of external confinement. Focusing on the case of a lattice confinement, we find that the spectral function displays three main singularity lines. One of them is due uniquely to lattice effects, while the two others correspond to the Lieb-I and Lieb-II modes occurring in a uniform fluid. Differently from the dynamical structure factor, in the spectral function the Lieb-II mode shows a divergence, thus providing a route to probe such mode in experiments with ultracold atoms.An energy gap develops near quantum critical point of quantum phase transition in a finite many-body (MB) system, facilitating the ground state transformation by adiabatic parameter change. In real application scenarios, however, the efficacy for such a protocol is compromised by the need to balance finite system lifetime with adiabaticity, as exemplified in a recent experiment that prepares three-mode balanced Dicke state near deterministically [Y.-Q. Zou et al., Proc. Natl. Acad. Sci. U.S.A. 115, 6381 (2018)PNASA60027-842410.1073/pnas.1715105115]. Instead of tracking the instantaneous ground state as unanimously required for most adiabatic crossing, this work reports a faster sweeping policy taking advantage of excited level dynamics. It is obtained based on deep reinforcement learning (DRL) from a multistep training scheme we develop. In the absence of loss, a fidelity ≥99% between prepared and the target Dicke state is achieved over a small fraction of the adiabatically required time. When loss is included, training is carried out according to an operational benchmark, the interferometric sensitivity of the prepared state instead of fidelity, leading to better sensitivity in about half of the previously reported time. Implemented in a Bose-Einstein condensate of ∼10^4 ^87Rb atoms, the balanced three-mode Dicke state exhibiting an improved number squeezing of 13.02±0.20  dB is observed within 766 ms, highlighting the potential of DRL for quantum dynamics control and quantum state preparation in interacting MB systems.We compute the nonplanar contribution to the universal anomalous dimension of the SU(4)-singlet twist-two operators in N=4 supersymmetric Yang-Mills theory at four loops through Lorentz spin 18. From this, we numerically evaluate the nonplanar contribution to the four-loop lightlike cusp anomalous dimension and derive the transcendental ζ_3 and ζ_5 parts of the universal anomalous dimension for arbitrary Lorentz spin in analytic form. As for the lightlike cusp anomalous dimension and the ζ_5 part of the universal anomalous dimension, we confirm previous results.We uncover a novel and robust phenomenon that causes the gradual self-replication of spatiotemporal Kerr cavity patterns in cylindrical microresonators. These patterns are inherently synchronized multifrequency combs. Under proper conditions, the axially localized nature of the patterns leads to a fundamental drift instability that induces transitions among patterns with a different number of rows. Self-replications, thus, result in the stepwise addition or removal of individual combs along the cylinder's axis. Transitions occur in a fully reversible and, consequently, deterministic way. The phenomenon puts forward a novel paradigm for Kerr frequency comb formation and reveals important insights into the physics of multidimensional nonlinear patterns.A ground-state atom uniformly accelerated through the Minkowski vacuum can become excited by emitting an Unruh-Minkowski photon. We show that from the perspective of an accelerated atom, the sign of the frequency of the Unruh-Minkowski photons can be positive or negative depending on the acceleration direction. The accelerated atom becomes excited by emitting an Unruh-Minkowski photon which has negative frequency in the atom's frame, and decays by emitting a positive-frequency photon. This leads to interesting effects. For example, the photon emitted by accelerated ground-state atom cannot be absorbed by another ground-state atom accelerating in the same direction, but it can be absorbed by an excited atom or a ground-state atom accelerated in the opposite direction. We also show that similar effects take place for Cherenkov radiation. Namely, a Cherenkov photon emitted by an atom cannot be absorbed by another ground-state atom moving with the same velocity, but can be absorbed by an excited atom or a ground-state atom moving in the opposite direction.The two-dimensional (2D) twisted bilayer materials with van der Waals coupling have ignited great research interests, paving a new way to explore the emergent quantum phenomena by twist degree of freedom. Generally, with the decreasing of twist angle, the enhanced interlayer coupling will gradually flatten the low-energy bands and isolate them by two high-energy gaps at zero and full filling, respectively. Although the correlation and topological physics in the low-energy flat bands have been intensively studied, little information is available for these two emerging gaps. In this Letter, we predict a 2D second-order topological insulator (SOTI) for twisted bilayer graphene and twisted bilayer boron nitride in both zero and full filling gaps. Employing a tight-binding Hamiltonian based on first-principles calculations, three unique fingerprints of 2D SOTI are identified, that is, nonzero bulk topological index, gapped topological edge state, and in-gap topological corner state. Most remarkably, the 2D SOTI exists in a wide range of commensurate twist angles, which is robust to microscopic structure disorder and twist center, greatly facilitating the possible experimental measurement.
Here's my website: https://www.selleckchem.com/products/ml792.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.