Notes
Notes - notes.io |
The IRIXS Spectrograph represents a new design of an ultra-high-resolution resonant inelastic X-ray scattering (RIXS) spectrometer that operates at the Ru L3-edge (2840 eV). First proposed in the field of hard X-rays by Shvyd'ko [(2015), Phys. Rev. A, 91, 053817], the X-ray spectrograph uses a combination of laterally graded multilayer mirrors and collimating/dispersing Ge(111) crystals optics in a novel spectral imaging approach to overcome the energy resolution limitation of a traditional Rowland-type spectrometer [Gretarsson et al. (2020), J. Synchrotron Rad. 27, 538-544]. selleckchem In combination with a dispersionless nested four-bounce high-resolution monochromator design that utilizes Si(111) and Al2O3(110) crystals, an overall energy resolution better than 35 meV full width at half-maximum has been achieved at the Ru L3-edge, in excellent agreement with ray-tracing simulations.Analysis of X-ray absorption spectroscopy data often involves the removal of artifacts or glitches from the acquired signal, a process commonly known as deglitching. Glitches result either from specific orientations of monochromator crystals or from scattering by crystallites in the sample itself. Since the precise energy - or wavelength - location and the intensity of glitches in a spectrum cannot always be predicted, deglitching is often performed on a per spectrum basis by the analyst. Some routines have been proposed, but they are prone to arbitrary selection of spectral artifacts and are often inadequate for processing large data sets. Here, a statistically robust algorithm, implemented as a Python program, for the automatic detection and removal of glitches that can be applied to a large number of spectra, is presented. It uses a Savitzky-Golay filter to smooth spectra and the generalized extreme Studentized deviate test to identify outliers. Robust, repeatable, and selective removal of glitches is achieved using this algorithm.A synchrotron-based technique using Compton scattering imaging is presented. This technique has been applied to a coin battery (CR2023), and the cross-sectional image has been obtained in 34 ms without sample rotation. A three-dimensional image of the whole structure has been reconstructed from 74 cross-sectional images taken consecutively by scanning the incident, wide X-ray beam along one direction. This work demonstrates that quick cross-sectional imaging of regions of interest and three-dimensional image reconstruction without sample rotation are feasible using Compton scattering imaging.The human cell nucleus serves as an important organelle holding the genetic blueprint for life. In this work, X-ray ptychography was applied to assess the masses of human cell nuclei using its unique phase shift information. Measurements were carried out at the I13-1 beamline at the Diamond Light Source that has extremely large transverse coherence properties. The ptychographic diffractive imaging approach allowed imaging of large structures that gave quantitative measurements of the phase shift in 2D projections. In this paper a modified ptychography algorithm that improves the quality of the reconstruction for weak scattering samples is presented. The application of this approach to calculate the mass of several human nuclei is also demonstrated.A quantitative analysis of the effect of strain on phase retrieval in Bragg coherent X-ray diffraction imaging is reported. It is shown in reconstruction simulations that the phase maps of objects with strong step-like phase changes are more precisely retrieved than the corresponding modulus values. The simulations suggest that the reconstruction precision for both phase and modulus can be improved by employing a modulus homogenization (MH) constraint. This approach was tested on experimental data from a highly strained Fe-Al crystal which also features antiphase domain boundaries yielding characteristic π phase shifts of the (001) superlattice reflection. The impact of MH is significant and this study outlines a successful method towards imaging of strong phase objects using the next generation of coherent X-ray sources, including X-ray free-electron lasers.Through Monte Carlo simulations, we investigate how various experimental parameters can influence the quality of time-resolved scanning transmission X-ray microscopy images. In particular, the effect of the X-ray photon flux, of the thickness of the investigated samples, and of the frequency of the dynamical process under investigation on the resulting time-resolved image are investigated. The ideal sample and imaging conditions that allow for an optimal image quality are then identifed.Multislice ptychography is a high-resolution microscopy technique used to image multiple separate axial planes using a single illumination direction. However, multislice ptychography reconstructions are often degraded by crosstalk, where some features on one plane erroneously contribute to the reconstructed image of another plane. Here, the use of a modified `double deep image prior' (DDIP) architecture is demonstrated in mitigating crosstalk artifacts in multislice ptychography. Utilizing the tendency of generative neural networks to produce natural images, a modified DDIP method yielded good results on experimental data. For one of the datasets, it is shown that using DDIP could remove the need of using additional experimental data, such as from X-ray fluorescence, to suppress the crosstalk. This method may help X-ray multislice ptychography work for more general experimental scenarios.In order to disentangle the physical effects at the origin of transition metal K-edge X-ray magnetic circular dichroism (XMCD) in coordination polymers and quantify small structural distortions from the intensity of these signals, a systematic investigation of Prussian blue analogs as model compounds is being conducted. Here the effects of the temperature and of the external magnetic field are tackled; none of these external parameters modify the shape of the XMCD signal but they both critically modify its intensity. The optimized experimental conditions, as well as a reliable and robust normalization procedure, could thus be determined for the study of the intrinsic parameters. Through an extended discussion on measurements on other XMCD-dedicated beamlines and for other coordination compounds, we finally provide new transition metal K-edge XMCD users with useful information to initiate and successfully carry out their projects.
My Website: https://www.selleckchem.com/products/m4076.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team