Notes
![]() ![]() Notes - notes.io |
Cancer is one of the most serious health concerns in 21st century whose prevalence is beyond boundaries and can affect any organ of human beings. The conventional chemotherapeutic treatment strategies lack specificity to tumours and are associated with toxic effects on immune system and other organ systems. In the past decades, there has been a continuous progress in the development of smart nanocarrier systems for target specific delivery of drugs against variety of tumours including intracellular gene-specific targeting. These nanocarriers are able to recognize the tumour cells and deliver the therapeutic agent in fixed proportions causing no or very less harm to healthy cells. Nanosystems have modified physicochemical properties, improved bioavailability and long retention in blood which enhances their potency. A huge number of nanocarrier based formulations have been developed and are in clinical trials. Nanocarrier systems include polymeric micelles, liposomes, dendrimers, carbon nanotubes, gold nanoparticles, etc. see more Recent advancements in nanocarrier systems include mesoporous silica nanoparticles (MSNs), metal organic frame works and quantum dots. In the present review, various nanocarrier based drug delivery systems along with their applications in the management of cancer have been described with special emphasis on MSNs.
In photoaging, the accumulation of ultraviolet (UV)-induced oxidative damage leads to the characteristic hallmarks of aging. Here arises the importance of autophagy as a cellular degradation process that cleans the cells of defective or aged organelles and macromolecules, thus maintaining cellular homeostasis. In spite of this, the exact impact of autophagy in photoaging is still elusive.
to evaluate the protective effects of resveratrol and/or co-enzyme-Q10 against the UVA-induced alterations and to explore the role of autophagy in their proposed benefits.
Sixty female mice were randomly divided into normal control, untreated UVA-exposed, resveratrol (50mg/kg), co-enzyme-Q10 (100mg/kg), and resveratrol/co-enzyme-Q10-treated UVA-exposed groups. Clinical signs of photoaging were evaluated using a modified grading score and the pinch test. Skin malondialdehyde and reduced glutathione were assessed as markers of oxidative stress. Tissues were examined for histopathological signs of photodamage, and autophaic benefits.
Valproic acid (VPA) is an HDAC inhibitor (HDACI) with anticancer activity, but it is hepatotoxic. N-(2-hydroxyphenyl)-2-propylpentanamide (o-OH-VPA) is a VPA aryl derivative designed in silico as a selective inhibitor of HDAC8 with biological properties against HeLa, rhabdomyosarcoma and breast cancer cell cultures.
We studied the epigenetic mechanism of o-OH-VPA as an HDACI and we evaluated whether it was toxic to normal cells.
HeLa cells and primary human fibroblast were used for this study as carcinogenic and normal cells, respectively. Cell survival was evaluated by MTT assay; viability and doubling time were determined by Trypan-blue method. HDAC activity was tested using the colorimetric HDAC activity assay. The expression of p21 was analyzed by PCR and HDAC8 expression was also evaluated by real-time PCR. Cell cycle and caspase-3 activity were analyzed by flow cytometry and caspase-3 colorimetric assay, respectively.
o-OH-VPA (IC50 = 0.1 mM) was fifty-eight more effective than VPA (IC50 = 5.8 mM) to reduce HeLa cell survival. Furthermore, o-OH-VPA increased the doubling time of HeLa cells by 33% with respect to the control. o-OHVPA acted as HDACI in HeLa cells without affecting the HDAC8 expression, arresting the cell cycle of HeLa cells in the G0/G1 phase due to the increase in p21 expression with inhibition of caspase-3 activity without exhibiting toxicity toward normal cells.
Our results revealed that o-OH-VPA is an HDACI with a selective effect against HeLa cells but without the known toxicity exerted by most pan-HDACIs on normal cells.
Our results revealed that o-OH-VPA is an HDACI with a selective effect against HeLa cells but without the known toxicity exerted by most pan-HDACIs on normal cells.Glioma comprises of a group of heterogeneous brain tumors originating from glial cells. Primary glioblastoma is among the most common glial cells that have a characteristic clinical and molecular profile. Advancement in the field of cancer research and inventions of various clinical methodologies could not improve the median survival of this deadly tumor from 12 months. The development of a non-invasive prognostic biomarker in blood would be a revolution in the diagnosis and therapeutic monitoring of this tumor. Extracellular vesicles (Evs) are released from the tumor microenvironment into the blood, which contains the genetic material that represents the genetics of tumor cells. It is also seen that these Evs contain a variety of RNA populations, including miRNAs. Several studies identified that circulating cell-free miRNAs, either free or present in Evs, could be considered as a potential biomarker in early diagnosis and prognosis of glioblastoma. Micro RNA studies in glioblastoma have found to be promising, as it reveals the biological pathway behind pathogenesis and helps in predicting the treatment targets. The literature says that various treatment methods change the type and quantity of miRNAs in biological fluids, which can be used to monitor the therapy. This review paper focuses on the role of circulating miRNAs as potential biomarkers in the diagnosis and clinical management of glioma patients.Cessation of menstruation, widely known as menopause is a significant transition period in women's life. It leads to the arrest of fertility and creates a depletion of the hormones causing physical, mental, sexual, and social problems which lead to a serious decline in their quality of life. The onset of menopause induces certain sudden changes, while others appear in a phasic manner, henceforth demanding an adequate understanding of its progression, adverse impact on life, and exploration of any remedial measures thereof. Menopause, despite being a natural occurrence, brings in significant changes to women's life, almost sometimes leading to severe debilitation. However, it is still not attended and remains an ignored health issue that warrants the immediate attention of researchers, practitioners, and health policymakers. The present review is an attempt to draw attention towards these women-centric health issues and diligently explores the causes, symptoms and also describes the various procedures for the management of menopausal and postmenopausal syndromes.
Read More: https://www.selleckchem.com/products/cilofexor-gs-9674.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team