NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Inflammatory rheumatoid arthritis boosts the inclination towards severe immune-mediated hepatitis inside mice by way of boosting leptin term inside Big t tissues.
We demonstrate that all aspects of the entropy's behavior can be traced back to the purity of the states and are illustrated by phonon Wigner functions in phase space.Surfing in rough waters is not always as fun as wave riding the "big one". Similarly, in optimization problems, fitness landscapes with a huge number of local optima make the search for the global optimum a hard and generally annoying game. Computational Intelligence optimization metaheuristics use a set of individuals that "surf" across the fitness landscape, sharing and exploiting pieces of information about local fitness values in a joint effort to find out the global optimum. In this context, we designed surF, a novel surrogate modeling technique that leverages the discrete Fourier transform to generate a smoother, and possibly easier to explore, fitness landscape. The rationale behind this idea is that filtering out the high frequencies of the fitness function and keeping only its partial information (i.e., the low frequencies) can actually be beneficial in the optimization process. We prove our theory by combining surF with a settings free variant of Particle Swarm Optimization (PSO) based on Fuzzy Logic, called Fuzzy Self-Tuning PSO. Specifically, we introduce a new algorithm, named F3ST-PSO, which performs a preliminary exploration on the surrogate model followed by a second optimization using the actual fitness function. We show that F3ST-PSO can lead to improved performances, notably using the same budget of fitness evaluations.This paper extends the formulation of the Shannon entropy under probabilistic uncertainties which are basically established in terms or relative errors related to the theoretical nominal set of events. Those uncertainties can eventually translate into globally inflated or deflated probabilistic constraints. In the first case, the global probability of all the events exceeds unity while in the second one lies below unity. A simple interpretation is that the whole set of events losses completeness and that some events of negative probability might be incorporated to keep the completeness of an extended set of events. The proposed formalism is flexible enough to evaluate the need to introduce compensatory probability events or not depending on each particular application. In particular, such a design flexibility is emphasized through an application which is given related to epidemic models under vaccination and treatment controls. Switching rules are proposed to choose through time the active model, among a predefined set of models organized in a parallel structure, which better describes the registered epidemic evolution data. The supervisory monitoring is performed in the sense that the tested accumulated entropy of the absolute error of the model versus the observed data is minimized at each supervision time-interval occurring in-between each two consecutive switching time instants. The active model generates the (vaccination/treatment) controls to be injected to the monitored population. find more In this application, it is not proposed to introduce a compensatory event to complete the global probability to unity but instead, the estimated probabilities are re-adjusted to design the control gains.This paper studied the Rayleigh-Bénard convection in binary fluid mixtures with a strong Soret effect (separation ratio ψ = - 0.6 ) in a rectangular container heated uniformly from below. We used a high-accuracy compact finite difference method to solve the hydrodynamic equations used to describe the Rayleigh-Bénard convection. A stable traveling-wave convective state with periodic source defects (PSD-TW) is obtained and its properties are discussed in detail. Our numerical results show that the novel PSD-TW state is maintained by the Eckhaus instability and the difference between the creation and annihilation frequencies of convective rolls at the left and right boundaries of the container. In the range of Rayleigh number in which the PSD-TW state is stable, the period of defect occurrence increases first and then decreases with increasing Rayleigh number. At the upper bound of this range, the system transitions from PSD-TW state to another type of traveling-wave state with aperiodic and more dislocated defects. Moreover, we consider the problem with the Prandtl number P r ranging from 0.1 to 20 and the Lewis number L e from 0.001 to 1, and discuss the stabilities of the PSD-TW states and present the results as phase diagrams.A series of TaNbVTiAlx (x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0) refractory high-entropy alloys (RHEAs) with high specific strength and reasonable plasticity were prepared using powder metallurgy (P/M) technology. This paper studied their microstructure and compression properties. The results show that all the TaNbVTiAlx RHEAs exhibited a single BCC solid solution microstructure with no elemental segregation. The P/M TaNbVTiAlx RHEAs showed excellent room-temperature specific strength (207.11 MPa*cm3/g) and high-temperature specific strength (88.37 MPa*cm3/g at 900 °C and 16.03 MPa*cm3/g at 1200 °C), with reasonable plasticity, suggesting that these RHEAs have potential to be applied at temperatures >1200 °C. The reasons for the excellent mechanical properties of P/M TaNbVTiAl0.2 RHEA were the uniform microstructure and solid solution strengthening effect.It is proposed that both human creativity and human consciousness are (unintended) consequences of the human brain's extraordinary energy efficiency. The topics of creativity and consciousness are treated separately, though have a common sub-structure. It is argued that creativity arises from a synergy between two cognitive modes of the human brain (which broadly coincide with Kahneman's Systems 1 and 2). In the first, available energy is spread across a relatively large network of neurons, many of which are small enough to be susceptible to thermal (ultimately quantum decoherent) noise. In the second, available energy is focussed on a smaller subset of larger neurons whose action is deterministic. Possible implications for creative computing in silicon are discussed. Starting with a discussion of the concept of free will, the notion of consciousness is defined in terms of an awareness of what are perceived to be nearby counterfactual worlds in state space. It is argued that such awareness arises from an interplay between memories on the one hand, and quantum physical mechanisms (where, unlike in classical physics, nearby counterfactual worlds play an indispensable dynamical role) in the ion channels of neural networks, on the other. As with the brain's susceptibility to noise, it is argued that in situations where quantum physics plays a role in the brain, it does so for reasons of energy efficiency. As an illustration of this definition of consciousness, a novel proposal is outlined as to why quantum entanglement appears to be so counter-intuitive.Understanding microbial growth with the use of mathematical models has a long history that dates back to the pioneering work of Jacques Monod in the 1940s. Monod's famous growth law expressed microbial growth rate as a simple function of the limiting nutrient concentration. However, to explain growth laws from underlying principles is extremely challenging. In the second half of the 20th century, numerous experimental approaches aimed at precisely measuring heat production during microbial growth to determine the entropy balance in a growing cell and to quantify the exported entropy. This has led to the development of thermodynamic theories of microbial growth, which have generated fundamental understanding and identified the principal limitations of the growth process. Although these approaches ignored metabolic details and instead considered microbial metabolism as a black box, modern theories heavily rely on genomic resources to describe and model metabolism in great detail to explain microbial growth. Into infer key black box parameters, such as the energy of formation or the degree of reduction of biomass. Such integration will allow understanding to what extent microbes can be viewed as thermodynamic machines, and how close they operate to theoretical optima.The interaction between the solar wind and the Earth's magnetosphere-ionosphere system is very complex, being essentially the result of the interplay between an external driver, the solar wind, and internal processes to the magnetosphere-ionosphere system. In this framework, modelling the Earth's magnetosphere-ionosphere response to the changes of the solar wind conditions requires a correct identification of the causality relations between the different parameters/quantities used to monitor this coupling. Nowadays, in the framework of complex dynamical systems, both linear statistical tools and Granger causality models drastically fail to detect causal relationships between time series. Conversely, information theory-based concepts can provide powerful model-free statistical quantities capable of disentangling the complex nature of the causal relationships. In this work, we discuss how to deal with the problem of measuring causal information in the solar wind-magnetosphere-ionosphere system. We show that a time delay of about 30-60 min is found between solar wind and magnetospheric and ionospheric overall dynamics as monitored by geomagnetic indices, with a great information transfer observed between the z component of the interplanetary magnetic field and geomagnetic indices, while a lower transfer is found when other solar wind parameters are considered. This suggests that the best candidate for modelling the geomagnetic response to solar wind changes is the interplanetary magnetic field component B z . A discussion of the relevance of our results in the framework of Space Weather is also provided.Failure mode and effects analysis (FMEA), as a commonly used risk management method, has been extensively applied to the engineering domain. A vital parameter in FMEA is the risk priority number (RPN), which is the product of occurrence (O), severity (S), and detection (D) of a failure mode. To deal with the uncertainty in the assessments given by domain experts, a novel Deng entropy weighted risk priority number (DEWRPN) for FMEA is proposed in the framework of Dempster-Shafer evidence theory (DST). DEWRPN takes into consideration the relative importance in both risk factors and FMEA experts. The uncertain degree of objective assessments coming from experts are measured by the Deng entropy. An expert's weight is comprised of the three risk factors' weights obtained independently from expert's assessments. In DEWRPN, the strategy of assigning weight for each expert is flexible and compatible to the real decision-making situation. The entropy-based relative weight symbolizes the relative importance. In detail, the higher the uncertain degree of a risk factor from an expert is, the lower the weight of the corresponding risk factor will be and vice versa. We utilize Deng entropy to construct the exponential weight of each risk factor as well as an expert's relative importance on an FMEA item in a state-of-the-art way. A case study is adopted to verify the practicability and effectiveness of the proposed model.
Read More: https://www.selleckchem.com/products/as1517499.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.