Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Pt(II) photosensitizers are emerging as novel Pt anticancer agents for cancer photodynamic therapy (PDT) to avoid uncontrollable toxicity of cisplatin. However, the application of Pt(II) photosensitizers is limited by tumor hypoxia and the poor penetration depth of excitation light. To overcome these drawbacks, exploiting the next generation of Pt anticancer agents is of urgent need. According to theoretical calculations, novel near-infrared (NIR)-absorbing Pt(II)-chelated azadipyrromethene dyes (PtDP-X, where X = N, C, and S) were designed. Importantly, spin-orbit coupling of the Pt atom could promote the intersystem crossing of a singlet-to-triplet transition for converting oxygen to singlet oxygen (1O2), and the azadipyrromethene skeleton could provide a strong photothermal effect. As expected, PtDP-X exhibited intense NIR absorption and synergistic PDT and photothermal effects with low dark cytotoxicity. Furthermore, water-soluble and biocompatible PtDP-N nanoparticles (PtDP-N NPs) were prepared that achieved effective tumor cell elimination with low side effects under 730 nm light irradiation in vitro and in vivo. This pioneering work could push the exploitation of NIR-absorbing metal-chelated azadipyrromethene dyes, so as to promote the positive evolution of phototherapy agents.Rhodium-catalyzed asymmetric addition of arylboron reagents to indene derivatives proceeded to give 2-arylindanes in good yields with high enantioselectivity. Deuterium-labeling experiments indicated that the present reaction involved a 1,4-Rh shift from an initially formed benzylrhodium to an arylrhodium intermediate before protonation leading to the corresponding addition product. The asymmetric addition was also successful for acenaphthylene, which has a similar skeleton to indene, where it was found that the benzylrhodium intermediate underwent direct protonation without the 1,4-Rh shift.The detection of trace protein biomarkers is essential in the diagnostic field. Thiostrepton molecular weight Protein detection systems ranging from widely used enzyme-linked immunosorbent assays to simple, inexpensive approaches, such as lateral flow immunoassays, play critical roles in medical and drug research. Despite continuous progress, current systems are insufficient for the diagnosis of diseases that require high sensitivity. In this study, we developed a heterogeneous sandwich-type sensing platform based on recombinase polymerase amplification using DNA aptamers specific to the target biomarker. Only the DNA bound to the target in the form of a heterogeneous sandwich was selectively amplified, and the fluorescence signal of an intercalating dye added before the amplification reaction was detected, thereby enabling high specificity and sensitivity. We applied this method for the detection of protein biomarkers for various infectious diseases including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and observed attomolar-level detection of biomarkers and low cross-reactivity between different viruses. We also confirmed detection efficiency of the proposed method using clinical samples. These results demonstrate that the proposed sensing platform can be used to diagnose various diseases requiring high sensitivity, specificity, and accuracy.Primary amoebic meningoencephalitis (PAM), caused by the pathogenic free-living amoeba Naegleria fowleri, is a rare but fatal disease. Nowadays, no fully effective therapy is available to erradicate or prevent this disease. Natural products could constitute a promising source of useful bioactive compounds in drug discovery. The present study is a characterization of main active compounds from the ethanolic extract of Inula viscosa (Asteraceae) leaves against N. fowleri trophozoites. Four compounds (1-4) were successfully identified by spectroscopic techniques, but only inuloxin A displayed a potential antiamoebic activity with an IC50 of 21.27 μM. The specificity of this compound toward the studied strain leads us to analyze the insight into its mechanism of action by performing in vitro assays of programmed cell death markers and to discuss the structure-activity relationship (SAR). The obtained results demonstrated that inuloxin A interferes with various processes leading to membrane damage, mitochondria alteration, chromatin condensation, and ROS accumulation, which highlight features specific to apoptosis. The current findings could be a promising step for developing new effective drugs against PAM.Ammonium is an important atmospheric constituent that dictates many environmental processes. The impact of the ammonium ion concentration on 10-50 μm aerosol droplet pH was quantified using pH nanoprobes and surface-enhanced Raman spectroscopy (SERS). Sample solutions were prepared by mixing 1 M ammonium sulfate (AS), ammonium nitrate (AN), sodium sulfate (SS), or sodium nitrate (SN) solutions with 1 M phosphate buffer (PB) at different volume ratios. Stable pH values were measured for pure PB, AS, and AN droplets at different concentrations. The centroid pH of 1 M PB droplets was ∼11, but when PB was systematically replaced with ammonium (AS- or AN-PB), the centroid pH within the droplets decreased from ≈11 to 5.5. Such a decrease was not observed in sodium (SS- or SN-PB) droplets, and no pH differences were observed between sulfate and nitrate salts. Ammonia partitioning to the gas phase in ammonium-containing droplets was evaluated to be negligible. Raman sulfate peak (∼980 cm-1) intensity measurements and surface tension measurements were conducted to investigate changes in ion distribution. The pH difference between ammonium-containing droplets and ammonium-free droplets is attributed to the alteration of the ion distribution in the presence of ammonium.Uncontrollable bleeding poses considerable fatality risks by large-volume blood losses. Current emergency antibleeding handlings including either compression with gauze or "passive" blood transfusion are thus far from ideal, while most recently developed hemostatic agents still share common limitations without considering the subsequent tissue repairing and antibacterial activity after treatment. Herein, we introduce a novel bioinspired aggregated collagen nanofiber-based biocompatible and efficient hemostatic hydrogel material (TS-Gel-Ag-col) prepared by the integration of multifunctional compounds of muco-mimetic poloxamer, polyvinylpyrrolidone, and dencichine/chitosan dialdehyde synergistic crosslinked aggregated collagen nanofibers decorated with silver nanoparticles. Comprehensive material characterization and in vitro and in vivo studies of TS-Gel-Ag-col demonstrate that these materials possess effective antihemorrhagic and antibacterial wound protection effects. Moreover, TS-Gel-Ag-col can facilitate the tissue repairing of skin wounds by promoting revascularization. TS-Gel-Ag-col holds great promise for next-generation collagen-based absorbable hemostatic materials and for the development of smart artificial skins.Transient receptor potential vanilloid type 1 (TRPV1) channels are activated by heat, vanilloids, and extracellular protons. Cryo-EM has revealed various conformations of TRPV1, and these structures suggest an intramolecular twisting motion in response to ligand binding. However, limited experimental data support this observation. Here, we analyzed the intramolecular motion of TRPV1 using diffracted X-ray tracking (DXT). DXT analyzes trajectories of Laue spots generated from attached gold nanocrystals and provides picometer spatial and microsecond time scale information about the intramolecular motion. We observed that both an agonist and a competitive antagonist evoked a rotating bias in TRPV1, though these biases were in opposing directions. Furthermore, the rotational bias generated by capsaicin was reversed between the wild-type and the capsaicin-insensitive Y511A mutant. Our findings bolster the understanding of the mechanisms used for activation and modulation of TRP channels, and this knowledge can be exploited for pharmacological usage such as inhibitor design.A symmetrical molecular array has been synthesized comprising a central zinc(II) 5,10,15,20-tetraphenylporphyrin with identical boron dipyrromethene (BODIPY) units appended at each of the meso sites. Excitation of any subunit causes a cascade of electronic energy-transfer steps, ultimately leading to the BODIPY triplet-excited state in high yield. Coincidentally, the triplet energy levels of the zinc(II) porphyrin and BODIPY appendage are closely balanced such that an equilibrium is established at both 77 K and room temperature. This fast equilibration allows global distribution of the triplet exciton around the array, leading to a significantly increased capture volume for bimolecular quenching and a substantial increase in the rate constant for bimolecular triplet-triplet annihilation. The corresponding free-base porphyrin analogue does not favor triplet exciton decentralization because of the large disparity in the electronic energy levels.The C═C photoswitching molecules [1,2-di(4-pyridyl)ethylene (DPE), 4-styrylpyridine (SP), and trans-1,2-stilbene (TS)] show favorable photoisomerization characteristics. Although the solid states of photoswitching molecules are usually used in optical devices, their excited state's evolution has been little explored. Here, the excited state's relaxation of DPE, SP, and TS in nanocrystal/microcrystal suspensions as well as in solution phase was studied to uncover the early events of their excited states. The dynamics of nanocrystal/microcrystal suspensions was tremendously accelerated in comparison to the kinetics obtained in the solution for these molecules under excitation. DPE exhibits the slowest decay rate, while SP shows the fastest decay rate in nanocrystal suspensions or solution, suggesting SP may be the best candidate for the photoswitching device. The intermolecular interactions and space restriction of the crystal lead to the acceleration of the excited state's evolution for DPE, SP, and TS. This provides new insight into the design of optical materials.Well-defined dinuclear silver(I) complexes have been targeted for applications in catalysis and materials chemistry, and the effect of close silver-silver interactions on electronic structure remains an area of active inquiry. In this study, we describe the synthesis, structure, and photophysical properties of dimeric silver complexes featuring a redox-active naphthyridine diimine ligand. Unusually for silver(I), these complexes display absorption features in the visible region due to metal-metal to ligand charge transfer (MMLCT) transitions, which arise from the combination of close silver-silver interactions and low-lying ligand π* orbitals. The complexes' photophysical properties are explored via a combination of spectroscopic and computational studies, revealing MMLCT excited state lifetimes that exceed 1 μs. These results portend previously unforeseen applications of silver(I) dimers in visible light absorption and excited state reactivity.
Reproductive health education is essential for adolescents with hearing impairment. Since they communicate using specialized language (i.e., sign language), specialized reproductive health services in sign language is a necessity. This study aimed to describe the needs, availability, and expectations of reproductive health services among adolescents with hearing impairment.
This study used a qualitative approach. It was carried out at a school for children with special needs in the city of Denpasar, Bali, Indonesia. Data were collected by in-depth interviews. The informants were 6 adolescents with hearing impairment aged 16-17 years and 4 other key informants, including school staff and health officers. The data were then analyzed using the thematic method.
We found that the informants had insufficient knowledge regarding reproductive health. There was no specific subject in the curriculum regarding this issue. Teachers did not specifically provide reproductive health information. The health service unit in the school had not been utilized well for this purpose.
Website: https://www.selleckchem.com/products/thiostrepton.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team