Notes
Notes - notes.io |
By quantifying the similarities between the OCT4 expression amongst neighbouring cells, we show that hESCs express similar OCT4 to cells within their local neighbourhood within the first two days of the experiment and before BMP4 treatment. Our framework allows us to quantify the relevant properties of proliferating hESC colonies and the procedure is widely applicable to other transcription factors and cell populations.
High morphological variability magnitude (MVM) and microvolt T wave alternans (TWA) within an electrocardiogram (ECG) signifies increased electrical instability and risk of sudden cardiac death. However, the influence of breathing rate (BR), heart rate (HR), and signal-to-noise ratio (SNR) is unknown and may inflate measured values.
We synthesize ECGs with morphologies derived from the Physikalisch-Technische Bundesanstalt Database. We calculate MVM and TWA at varying BRs, HRs and SNRs. We compare the MVM and TWA of signal with versus without breathing at varying HRs and SNRs. We then quantify the percentage of MVM and TWA estimates affected by BR and HR in a healthy population and assess the effect of removing these affected estimates on a method for classifying individuals with and without post-traumatic stress disorder (PTSD).
For signals with high SNR (>15 dB), MVM is significantly increased when BRs are > 9 respirations/minute (rpm) and HRs are < 100 beats/minute (bpm). Increased TWAs are detected for HR/BR pairs of 60/15, 60/30 and 120/30 bpm/rpm. For 18 healthy participants, 8.33% of TWA windows and 66.76% of MVM windows are affected by BR and HR. On average, the number of windows with TWA elevations > 47 μV decreases by 23% after excluding regions with significant BR and HR effect. Adding HR and BR to a morphological variability feature increases the classification performance by 6% for individuals with and without PTSD.
Physiological BR and HR significantly increase MVM and TWA , indicating that BR and HR should be considered separately as confounders. The code for this work has been released as part of an open-source toolbox.
Physiological BR and HR significantly increase MVM and TWA , indicating that BR and HR should be considered separately as confounders. The code for this work has been released as part of an open-source toolbox.The aim of this study was to evaluate the clinical impact of relative biological effectiveness (RBE) variations in proton beam scanning treatment (PBS) for left-sided breast cancer versus the assumption of a fixed RBE of 1.1, particularly in the context of comparisons with photon-based three-dimensional conformal radiotherapy (3DCRT) and volumetric modulated arc therapy (VMAT). Ten patients receiving radiation treatment to the whole breast/chest wall and regional lymph nodes were selected for each modality. For PBS, the dose distributions were re-calculated with both a fixed RBE and a variable RBE using an empirical RBE model. buy GSK'963 Dosimetric indices based on dose-volume histogram analysis were calculated for the entire heart wall, left anterior descending artery (LAD) and left lung. Furthermore, normal tissue toxicity probabilities for different endpoints were evaluated. The results show that applying a variable RBE significantly increases the RBE-weighted dose and consequently the calculated dosimetric indices increases for all organs compared to a fixed RBE. The mean dose to the heart and the maximum dose to the LAD and the left lung are significantly lower for PBS assuming a fixed RBE compared to 3DCRT. However, no statistically significant difference is seen when a variable RBE is applied. For a fixed RBE, lung toxicities are significantly lower compared to 3DCRT but when applying a variable RBE, no statistically significant differences are noted. A disadvantage is seen for VMAT over both PBS and 3DCRT. One-to-one plan comparison on 8 patients between PBS and 3DCRT 3DCRT shows similar results. We conclude that dosimetric analysis for all organs and toxicity estimation for the left lung might be underestimated when applying a fixed RBE for protons. Potential RBE variations should therefore be considered as uncertainty bands in outcome analysis.X-ray mammography is the gold standard technique in breast cancer screening programmes. One of the main challenges that mammography is still facing is scattered radiation, which degrades the quality of the image and complicates the diagnosis process. Anti-scatter grids, the main standard physical scattering reduction technique, have some unresolved challenges as they increase the dose delivered to the patient, do not remove all the scattered radiation and increase the cost of the equipment. Alternative scattering reduction methods based on post-processing algorithms, have lately been under investigation. This study is concerned with the use of image post-processing to reduce the scatter contribution in the image, by convolving the primary plus scatter image with kernels obtained from simplified Monte Carlo (MC) simulations. The proposed semi-empirical approach uses up to five thickness-dependant symmetric kernels to accurately estimate the scatter contribution of different areas of the image. Single breast thickness-dependant kernels can over-estimate the scatter signal up to 60%, while kernels adapting to local variations have to be modified for each specific case adding high computational costs. The proposed method reduces the uncertainty to a 4%-10% range for a 35-70 mm breast thickness range, making it a very efficient, case-independent scatter modelling technique. To test the robustness of the method, the scattered corrected image has been successfully compared against full MC simulations for a range of breast thicknesses. In addition, clinical images of the 010A CIRS phantom were acquired with a mammography system with and without the presence of the anti-scatter grid. The grid-less images were post-processed and their quality was compared against the grid images, by evaluating the contrast-to-noise ratio and variance ratio using several test objects, which simulate calcifications and tumour masses. The results obtained show that the method reduces the scatter to similar levels than the anti-scatter grids.
My Website: https://www.selleckchem.com/products/gsk963.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team