Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
This procedure can also be employed by most laboratories equipped with standard tissue culture equipment. The organoids generated using this protocol can be used as ex vivo surrogates to understand both the molecular mechanisms underpinning urological cancer pathology and to evaluate treatments to inform clinical management.Histone proteins associate with DNA to form the eukaryotic chromatin. The basic unit of chromatin is a nucleosome, made up of a histone octamer consisting of two copies of the core histones H2A, H2B, H3, and H4, wrapped around by the DNA. The octamer is composed of two copies of an H2A/H2B dimer and a single copy of an H3/H4 tetramer. The highly charged core histones are prone to non-specific interactions with several proteins in the cellular cytoplasm and the nucleus. Histone chaperones form a diverse class of proteins that shuttle histones from the cytoplasm into the nucleus and aid their deposition onto the DNA, thus assisting the nucleosome assembly process. Some histone chaperones are specific for either H2A/H2B or H3/H4, and some function as chaperones for both. This protocol describes how in vitro laboratory techniques such as pull-down assays, analytical size-exclusion chromatography, analytical ultra-centrifugation, and histone chaperoning assay could be used in tandem to confirm whether a given protein is functional as a histone chaperone.Geothermal springs are rich in various metal ions due to the interaction between rock and water that takes place in the deep aquifer. Moreover, due to seasonality variation in pH and temperature, fluctuation in element composition is periodically observed within these extreme environments, influencing the environmental microbial communities. Extremophilic microorganisms that thrive in volcanic thermal vents have developed resistance mechanisms to handle several metal ions present in the environment, thus taking part to complex metal biogeochemical cycles. Moreover, extremophiles and their products have found an extensive foothold in the market, and this holds true especially for their enzymes. In this context, their characterization is functional to the development of biosystems and bioprocesses for environmental monitoring and bioremediation. To date, the isolation and cultivation under laboratory conditions of extremophilic microorganisms still represent a bottleneck for fully exploiting their biotechnological potential. This work describes a streamlined protocol for the isolation of thermophilic microorganisms from hot springs as well as their genotypical and phenotypical identification through the following steps (1) Sampling of microorganisms from geothermal sites ("Pisciarelli", a volcanic area of Campi Flegrei in Naples, Italy); (2) Isolation of heavy metal resistant microorganisms; (3) Identification of microbial isolates; (4) Phenotypical characterization of the isolates. The methodologies described in this work might be generally applied also for the isolation of microorganisms from other extreme environments.The cornea is critical for vision, accounting for about two-thirds of the refractive power of the eye. Crucial to the role of the cornea in vision is its transparency. However, due to its external position, the cornea is highly susceptible to a wide variety of injuries that can lead to the loss of corneal transparency and eventual blindness. Efficient corneal wound healing in response to these injuries is pivotal for maintaining corneal homeostasis and preservation of corneal transparency and refractive capabilities. In events of compromised corneal wound healing, the cornea becomes vulnerable to infections, ulcerations, and scarring. Given the fundamental importance of corneal wound healing to the preservation of corneal transparency and vision, a better understanding of the normal corneal wound healing process is a prerequisite to understanding impaired corneal wound healing associated with infection and disease. Toward this goal, murine models of corneal wounding have proven useful in furthering our understanding of the corneal wound healing mechanisms operating under normal physiological conditions. Here, a protocol for creating a central corneal epithelial abrasion in mouse using a trephine and a blunt golf club spud is described. In this model, a 2 mm diameter circular trephine, centered over the cornea, is used to demarcate the wound area. The golf club spud is used with care to debride the epithelium and create a circular wound without damaging the corneal epithelial basement membrane. The resulting inflammatory response proceeds as a well-characterized cascade of cellular and molecular events that are critical for efficient wound healing. This simple corneal wound healing model is highly reproducible and well-published and is now being used to evaluate compromised corneal wound healing in the context of disease.Human mesenchymal stem cells derived from adipose tissue have become increasingly attractive as they show appropriate features and are an accessible source for regenerative clinical applications. Different protocols have been used to obtain adipose-derived stem cells. This article describes different steps of an improved time-saving protocol to obtain a more significant amount of ADSC, showing how to cryopreserve and thaw ADSC to obtain viable cells for culture expansion. One hundred milliliters of lipoaspirate were collected, using a 26 cm three-hole and 3 mm caliber syringe liposuction, from the abdominal area of nine patients who subsequently underwent elective abdominoplasty. The stem cells isolation was carried out with a series of washes with Dulbecco's Phosphate Buffered Saline (DPBS) solution supplemented with calcium and the use of collagenase. Stromal Vascular Fraction (SVF) cells were cryopreserved, and their viability was checked by immunophenotyping. The SVF cellular yield was 15.7 x 105 cells/mL, ranging between 6.1-26.2 cells/mL. Adherent SVF cells reached confluence after an average of 7.5 (±4.5) days, with an average cellular yield of 12.3 (± 5.7) x 105 cells/mL. The viability of thawed SVF after 8 months, 1 year, and 2 years ranged between 23.06%-72.34% with an average of 47.7% (±24.64) with the lowest viability correlating with cases of two-year freezing. The use of DPBS solution supplemented with calcium and bag resting times for fat precipitation with a shorter time of collagenase digestion resulted in an increased stem cell final cellular yield. The detailed procedure for obtaining high yields of viable stem cells was more efficient regarding time and cellular yield than the techniques from previous studies. Even after a long period of cryopreservation, viable ADSC cells were found in the SVF.Drosophila phototransduction is one of the fastest known G protein-coupled signaling pathways. To ensure the specificity and efficiency of this cascade, the calcium (Ca2+)-permeable cation channel, transient receptor potential (TRP), binds tightly to the scaffold protein, inactivation-no-after-potential D (INAD), and forms a large signaling protein complex with eye-specific protein kinase C (ePKC) and phospholipase Cβ/No receptor potential A (PLCβ/NORPA). However, the biochemical properties of the Drosophila TRP channel remain unclear. Based on the assembling mechanism of INAD protein complex, a modified affinity purification plus competition strategy was developed to purify the endogenous TRP channel. First, the purified histidine (His)-tagged NORPA 863-1095 fragment was bound to Ni-beads and used as bait to pull down the endogenous INAD protein complex from Drosophila head homogenates. Then, excessive purified glutathione S-transferase (GST)-tagged TRP 1261-1275 fragment was added to the Ni-beads to compete with the TRP channel. Finally, the TRP channel in the supernatant was separated from the excessive TRP 1261-1275 peptide by size-exclusion chromatography. This method makes it possible to study the gating mechanism of the Drosophila TRP channel from both biochemical and structural angles. The electrophysiology properties of purified Drosophila TRP channels can also be measured in the future.Group B Streptococcus (GBS) is one of the most common bacteria isolated during human pregnancy. It is a leading cause of placental infection/inflammation, termed chorioamnionitis. Chorioamnionitis exposes the developing fetus to a high risk of organ injuries, perinatal morbidity, and mortality, as well as life-long neurobehavioral impairments and other non-neurological developmental issues. The two most frequent subtypes of GBS isolates from maternal and fetal tissues are serotypes Ia (13%-23%) and III (25%-53%). Our lab has developed and characterized a rat model of GBS-induced chorioamnionitis to study subsequent impacts on the central nervous system of the developing fetus and to understand underlying mechanistic aspects. This article presents the design as well as uses of the preclinical rat model, which closely reproduces the hallmark of GBS-induced chorioamnionitis in humans. This article aims to help scientists reproduce the experimental design as well as to provide support through examples of troubleshooting. The present model may also contribute to potential discoveries through uncovering causes, mechanisms, and novel therapeutic avenues, which remain unsettled in many developmental impairments arising from chorioamnionitis. Furthermore, the use of this model may be extended to the studies of perinatal non-neurological common and severe morbidities affecting, for instance, the retina, bowel, lung, and kidney. The main interest of this research is in the field of GBS-induced fetal neurodevelopmental impairments such as cerebral palsy (CP), attention deficit hyperactivity disorder (ADHD), and autism spectrum disorder (ASD). The rationale supporting this model is presented in this article, followed by procedures and results.In eukaryotes, meiosis is essential for genome stability and genetic diversity in sexual reproduction. Experimental analyses of spermatocytes in testes are critical for the investigations of spindle assembly and chromosome segregation in male meiotic division. The mouse spermatocyte is an ideal model for mechanistic studies of meiosis, however, the effective methods for the analyses of spermatocytes are lacking. In this article, a practical and efficient method for the in vivo inhibition of kinesin-7 CENP-E in mouse spermatocytes is reported. compound library chemical A detailed procedure for testicular injection of a specific inhibitor GSK923295 through abdominal surgery in 3-week-old mice is presented. Furthermore, described here is a series of protocols for tissue collection and fixation, hematoxylin-eosin staining, immunofluorescence, flow cytometry and transmission electron microscopy. Here we present an in vivo inhibition model via abdominal surgery and testicular injection, that could be a powerful technique to study male meiosis. We also demonstrate that CENP-E inhibition results in chromosome misalignment and metaphase arrest in primary spermatocytes during meiosis I. Our in vivo inhibition method will facilitate mechanistic studies of meiosis, serve as a useful method for genetic modifications of male germ lines, and shed a light on future clinical applications.
My Website: https://www.selleckchem.com/products/fluorofurimazine.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team