Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
7 cells. Additionally, PZRAS has inhibitory functions on the RANKL-stimulated activation of ERK and JNK, which lead to a decrease in the expression of NFATc1 and c-Fos. In an in vivo study, bone resorption induced by LPS was recovered by treatment with PZRAS in bone volume per tissue volume (BV/TV) compared to control. Furthermore, the ratio of eroded bone surface of femurs was significantly increased in LPStreated mice compared to vehicle group, but this ratio was significantly reversed in PZRAS-treated mice. These results suggest that PZRAS could prevent or treat disorders with abnormal bone loss.Drought is a major abiotic factor and has drastically reduced crop yield globally, thus damaging the agricultural industry. Drought stress decreases crop productivity by negatively affecting crop morphological, physiological, and biochemical factors. The use of drought tolerant bacteria improves agricultural productivity by counteracting the negative effects of drought stress on crops. In this study, we isolated bacteria from the rhizosphere of broccoli field located in Daehaw-myeon, Republic of Korea. Sixty bacterial isolates were screened for their growth-promoting capacity, in vitro abscisic acid (ABA), and sugar production activities. Among these, bacterial isolates YNA59 was selected based on their plant growth-promoting bacteria traits, ABA, and sugar production activities. Isolate YNA59 highly tolerated oxidative stress, including hydrogen peroxide (H2O2) and produces superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activities in the culture broth. YNA59 treatment on broccoli significantly enhanced plant growth attributes, chlorophyll content, and moisture content under drought stress conditions. Under drought stress, the endogenous levels of ABA, jasmonic acid (JA), and salicylic acid (SA) increased; however, inoculation of YNA59 markedly reduced ABA (877 ± 22 ng/g) and JA (169.36 ± 20.74 ng/g) content, while it enhanced SA levels (176.55 ± 9.58 ng/g). Antioxidant analysis showed that the bacterial isolate YNA59 inoculated into broccoli plants contained significantly higher levels of SOD, CAT, and APX, with a decrease in GPX levels. The bacterial isolate YNA59 was therefore identified as Variovorax sp. YNA59. Our current findings suggest that newly isolated drought tolerant rhizospheric Variovorax sp. YNA59 is a useful stress-evading rhizobacterium that improved droughtstress tolerance of broccoli and could be used as a bio-fertilizer under drought conditions.CRISPR/Cpf1 has emerged as a new CRISPR-based genome editing tool because, in comparison with CRIPSR/Cas9, it has a different T-rich PAM sequence to expand the target DNA sequence. Single-base editing in the microbial genome can be facilitated by oligonucleotide-directed mutagenesis (ODM) followed by negative selection with the CRISPR/Cpf1 system. However, single point mutations aided by Cpf1 negative selection have been rarely reported in Corynebacterium glutamicum. This study aimed to introduce an amber stop codon in crtEb encoding lycopene hydratase, through ODM and Cpf1-mediated negative selection; deficiency of this enzyme causes pink coloration due to lycopene accumulation in C. glutamicum. Consequently, on using double-, triple-, and quadruple-basemutagenic oligonucleotides, 91.5-95.3% pink cells were obtained among the total live C. glutamicum cells. However, among the negatively selected live cells, 0.6% pink cells were obtained using single-base-mutagenic oligonucleotides, indicating that very few single-base mutations were introduced, possibly owing to mismatch tolerance. This led to the consideration of various targetmismatched crRNAs to prevent the death of single-base-edited cells. Consequently, we obtained 99.7% pink colonies after CRISPR/Cpf1-mediated negative selection using an appropriate singlemismatched crRNA. Furthermore, Sanger sequencing revealed that single-base mutations were successfully edited in the 99.7% of pink cells, while only two of nine among 0.6% of pink cells were correctly edited. The results indicate that the target-mismatched Cpf1 negative selection can assist in efficient and accurate single-base genome editing methods in C. glutamicum.Climate change is expected to affect not only availability and quality of water, the valuable resource of human life on Earth, but also ultimately public health issue. A six-year monitoring (total 20 times) of Escherichia coli O157, Salmonella enterica, Legionella pneumophila, Shigella sonnei, Campylobacter jejuni, and Vibrio cholerae was conducted at five raw water sampling sites including two lakes, Hyundo region (Geum River) and two locations near Water Intake Plants of Han River (Guui region) and Nakdong River (Moolgeum region). A total 100 samples of 40 L water were tested. Most of the targeted bacteria were found in 77% of the samples and at least one of the target bacteria was detected (65%). Among all the detected bacteria, E. coli O157 were the most prevalent with a detection frequency of 22%, while S. sonnei was the least prevalent with a detection frequency of 2%. Nearly all the bacteria (except for S. sonnei) were present in samples from Lake Soyang, Lake Juam, and the Moolgeum region in Nakdong River, while C. jejuni was detected in those from the Guui region in Han River. During the six-year sampling period, individual targeted noxious bacteria in water samples exhibited seasonal patterns in their occurrence that were different from the indicator bacteria levels in the water samples. The fact that they were detected in the five Korea's representative water environments make it necessary to establish the chemical and biological analysis for noxious bacteria and sophisticated management systems in response to climate change.Compound K (C-K) is one of the most pharmaceutically effective ginsenosides, but it is absent in natural ginseng. However, C-K can be obtained through the hydrolysis of protopanaxadiol-type ginsenosides (PPDGs) in natural ginseng. The aim of this study was to obtain the high concentration of food-available C-K using PPDGs in Korean ginseng extract by an extracellular enzyme from Aspergillus niger KACC 46495. A. niger was cultivated in the culture medium containing the inducer carboxymethyl cellulose (CMC) for 6 days. The extracellular enzyme extracted from A. niger was prepared from the culture broth by filtration, ammonium sulfate, and dialysis. The extracellular enzyme was used for C-K production using PPDGs. The glycoside-hydrolyzing pathways for converting PPDGs into C-K by the extracellular enzyme were Rb1 → Rd → F2 → C-K, Rb2 → Rd or compound O → F2 or compound Y → C-K, and Rc → Rd or compound Mc1 → F2 or compound Mc → C-K. The extracellular enzyme from A. Selleckchem CAY10603 niger at 8.0 mg/ml, which was obtained by the induction of CMC during the cultivation, converted 6.0 mg/ml (5.6 mM) PPDGs in Korean ginseng extract into 2.8 mg/ml (4.5 mM) food-available C-K in 9 h, with a productivity of 313 mg/l/h and a molar conversion of 80%. To the best of our knowledge, the productivity and concentration of C-K of the extracellular enzyme are the highest among those by crude enzymes from wild-type microorganisms.Transcription factor engineering to regulate multiple genes has shown promise in the field of microalgae genetic engineering. Here, we report the first use of transcription factor engineering in Chlorella sp. HS2, thought to have potential for producing biofuels and bioproducts. We identified seven endogenous bZIP transcription factors in Chlorella sp. HS2 and named them HSbZIP1 through HSbZIP7. We overexpressed HSbZIP1, a C-type bZIP transcription factor, in Chlorella sp. HS2 with the goal of enhancing lipid production. Phenotype screening under heterotrophic conditions showed that all transformants exhibited increased fatty acid production. In particular, HSbZIP1 37 and 58 showed fatty acid methyl ester (FAME) yields of 859 and 1,052 mg/l, respectively, at day 10 of growth under heterotrophic conditions, and these yields were 74% and 113% higher, respectively, than that of WT. To elucidate the mechanism underlying the improved phenotypes, we identified candidate HSbZIP1-regulated genes via transcription factor binding site analysis. We then selected three genes involved in fatty acid synthesis and investigated mRNA expression levels of the genes by qRTPCR. The result revealed that the possible HSbZIP1-regulated genes involved in fatty acid synthesis were upregulated in the HSbZIP1 transformants. Taken together, our results demonstrate that HSbZIP1 can be utilized to improve lipid production in Chlorella sp. HS2 under heterotrophic conditions.The study of climate and respiratory viral infections using big data may enable the recognition and interpretation of relationships between disease occurrence and climatic variables. In this study, realtime reverse transcription quantitative PCR (qPCR) methods were used to identify Human respiratory coronaviruses (HCoV). infections in patients below 10 years of age with respiratory infections who visited Dankook University Hospital in Cheonan, South Korea, from January 1, 2012, to December 31, 2018. Out of the 9010 patients who underwent respiratory virus real-time reverse transcription qPCR test, 364 tested positive for HCoV infections. Among these 364 patients, 72.8% (n = 265) were below 10 years of age. Data regarding the frequency of infections was used to uncover the seasonal pattern of the two viral strains, which was then compared with local meteorological data for the same time period. HCoV-229E and HCoV-OC43 showed high infection rates in patients below 10 years of age. There was a negative relationship between HCoV-229E and HCoV-OC43 infections with air temperature and wind-chill temperatures. Both HCoV-229E and HCoV-OC43 rates of infection were positively related to atmospheric pressure, while HCoV-229E was also positively associated with particulate matter concentrations. Our results suggest that climatic variables affect the rate in which children below 10 years of age are infected with HCoV. These findings may help to predict when prevention strategies may be most effective.Due to the potential of antioxidants to scavenge free radicals in human body, it is important to be able to prepare antioxidant peptides that meet the industrial requirements for cosmetics and food. Here, we determined in vivo/in vitro activities of antioxidant peptide from P. fucata (PFAOP) prepared by bio-fermentation method. The antioxidant property test results showed the DPPH, hydroxyl, superoxide radical-scavenging, and cellular antioxidant activity. EC50 values of PFAOPs were 0.018 ± 0.005, 0.126 ± 0.008, 0.168 ± 0.005, and 0.105 ± 0.005 mg/ml, respectively, exhibiting higher antioxidant activities than glutathione (p less then 0.05). Moreover, anti-proliferation and cytotoxicity activity results illustrated PFAOP has a potent anti-proliferative activity against HepG2, Caco-2, and MCF-7 carcinoma cells with no cytotoxicity. Moreover, the protocols we developed in this work demonstrated several excellent advantages in PFAOP preparation compared to enzymatic hydrolysis or chemical synthesis methods and provide a theoretical foundation for higher-value application of marine-derived functional peptides.
My Website: https://www.selleckchem.com/products/cay10603.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team