Notes
![]() ![]() Notes - notes.io |
to greater gray matter reductions in BD patients in comparison to UD patients. The results support the neuro-inflammation pathophysiology mechanism in mood disorder. It is clinically important to monitor BMI, which, in this investigation, positively correlated with levels of inflammatory cytokines.BACKGROUND Mesenchymal stromal cells (MSCs) have attracted intense interest due to their powerful intrinsic properties of self-regeneration, immunomodulation and multi-potency, as well as being readily available and easy to isolate and culture. Notwithstanding, MSC based therapy suffers reduced efficacy due to several challenges which include unfavorable microenvironmental factors in vitro and in vivo. BODY In the quest to circumvent these challenges, several modification techniques have been applied to the naïve MSC to improve its inherent therapeutic properties. These modification approaches can be broadly divided into two groups to include genetic modification and preconditioning modification (using drugs, growth factors and other molecules). This field has witnessed great progress and continues to gather interest and novelty. We review these innovative approaches in not only maintaining, but also enhancing the inherent biological activities and therapeutics of MSCs with respect to migration, homing to target site, adhesion, survival and reduced premature senescence. We discuss the application of the improved modified MSC in some selected human diseases. Possible ways of yet better enhancing the therapeutic outcome and overcoming challenges of MSC modification in the future are also elaborated. CONCLUSION The importance of prosurvival and promigratory abilities of MSCs in their therapeutic applications can never be overemphasized. These abilities are maintained and even further enhanced via MSC modifications against the inhospitable microenvironment during culture and transplantation. This is a turning point in MSC-based therapy with promising preclinical studies and higher future prospect.BACKGROUND With improvements in in vitro culture techniques there has been a steady shift in practice to transfer embryos at the blastocyst stage (post fertilization day (p.f.d.) 5-7), when embryos reach the endometrial cavity during natural conception. For patients with > 5 zygotes on day 1 of embryo development, fresh blastocyst embryo transfer (ET) increases live birth rates when compared to cleavage stage (p.f.d. 3) transfer. In poorer prognosis patients (≤ 5 zygotes) cleavage stage ET is commonly performed to reduce the risk of cycle cancellation if no embryo survives to the blastocyst stage. However, there is a dearth of randomized controlled trial (RCT) data demonstrating improved live birth rates per cycle for cleavage vs blastocyst stage ET in this subgroup of patients. The hypothesis of the PRECiSE (PooR Embryo Yield Cleavage Stage Versus blaStocyst Embryo Transfer) trial is that blastocyst ET is not inferior to cleavage stage ET with regard to live birth rates per retrieval in poorer prognosis patients. The adoption of routine blastocyst culture for all patients would result in higher rates of single embryo transfers (SET), reduced incidence of multiple pregnancies and simplified laboratory protocols, thereby reducing costs. METHODS/DESIGN Multicenter, non-inferiority randomized controlled trial (RCT) comparing blastocyst to cleavage stage embryo transfer in poorer prognosis patients with ≤5 zygotes on day 1 after fertilization. The primary outcome is live birth per retrieval. Secondary outcomes include time to pregnancy, clinical pregnancy, ongoing pregnancy, miscarriage and multiple pregnancy rate (per retrieval). This trial will enroll 658 women with ≤5 zygotes on day 1 at 6 IVF centers over the course of 22 months. DISCUSSION If the hypothesis is proven true, the data from this trial may facilitate the adoption of uniform blastocyst culture in all IVF patients. TRIAL REGISTRATION ClinicalTrials.gov Identifier NCT03764865. Registered 5 December 2019, Protocol issue date 4 December 2018, Original.Immune checkpoint blockade targeting PD-1/PD-L1 has promising therapeutic efficacy in a variety of tumors, but resistance during treatment is a major issue. In this review, we describe the utility of PD-L1 expression levels, mutation burden, immune cell infiltration, and immune cell function for predicting the efficacy of PD-1/PD-L1 blockade therapy. Furthermore, we explore the mechanisms underlying immunotherapy resistance caused by PD-L1 expression on tumor cells, T cell dysfunction, and T cell exhaustion. Based on these mechanisms, we propose combination therapeutic strategies. We emphasize the importance of patient-specific treatment plans to reduce the economic burden and prolong the life of patients. The predictive indicators, resistance mechanisms, and combination therapies described in this review provide a basis for improved precision medicine.BACKGROUND The majority of emerging infectious diseases are zoonotic in nature and originate from wildlife reservoirs. Borna disease, caused by Borna disease virus 1 (BoDV-1), is an infectious disease affecting mammals, but recently it has also been shown to cause fatal encephalitis in humans. The endemic character of Borna disease points towards a nature-bound reservoir, with only one shrew species identified as reservoir host to date. Bats have been identified as reservoirs of a variety of zoonotic infectious agents. Endogenous borna-like elements in the genome of certain bat species additionally point towards co-evolution of bats with bornaviruses and therefore raise the question whether bats could serve as a potential reservoir of orthobornaviruses. METHODS Frozen brain samples (n = 257) of bats of seven different genera from Germany were investigated by orthobornaviral RT-PCR. Additionally, tissue slides of formalin-fixed paraffin-embedded material of a subset of these bats (n = 140) were investigated for orthobornaviral phosphoprotein by immunohistochemistry. RESULTS The brain samples were tested by RT-PCR without any evidence of orthobornavirus specific amplicons. Immunohistochemistry revealed a faint immunoreaction in 3/140 bats but with an untypical staining pattern for viral antigen. CONCLUSIONS RT-PCR-screening showed no evidence for orthobornaviral RNA in the investigated bats. However, immunohistochemistry results should be investigated further to elucidate whether the reaction might be associated with expressed endogenous bornaviral elements or other so far unknown bornaviruses.Ligaments and tendons are fibrous tissues with poor vascularity and limited regeneration capacity. Currently, a ligament/tendon injury often require a surgical procedure using auto- or allografts that present some limitations. These inadequacies combined with the significant economic and health impact have prompted the development of tissue engineering approaches. Several natural and synthetic biodegradable polymers as well as composites, blends and hybrids based on such materials have been used to produce tendon and ligament scaffolds. Given the complex structure of native tissues, the production of fiber-based scaffolds has been the preferred option for tendon/ligament tissue engineering. selleck compound Electrospinning and several textile methods such as twisting, braiding and knitting have been used to produce these scaffolds. This review focuses on the developments achieved in the preparation of tendon/ligament scaffolds based on different biodegradable polymers. Several examples are overviewed and their processing methodologies, as well as their biological and mechanical performances, are discussed.BACKGROUND Crohn's disease (CD) is a multifactorial disease characterized by chronic intestinal inflammation. The increased visceral adiposity near the affected intestinal area, of which mesenteric adipose tissue (MAT) is the main component, is a feature of CD. Both protective and pathological roles have been attributed to this disease-associated tissue in CD. To understand the contribution of MAT to CD pathophysiology, a molecular and cellular signature of disease-associated MAT in CD patients was provided. METHODS We performed an observational study with whole transcriptional analysis by RNA sequencing (RNA-seq) of MAT and ileal mucosa from CD patients with active disease and controls. qPCR and immunohistology were performed for validation analysis. RESULTS RNA-seq identified 17 significantly regulated genes (|FC| > 1.5; FDR 1.5, nominal p ≤ 0.05). Ingenuity Pathway Analysis revealed the significant regulation of pathways related to T- and B cell functionality in the MAT of CD patients. Despite the differences between the MAT and ileal signatures of CD patients, we identified a subset of 204 genes significantly modulated in both tissues compared to controls. This common signature included genes related to the plasma cell signature. Genes such as S100A8, S100A9 (calprotectin) and IL1B, which are associated with acute inflammatory response, were exclusively regulated in the ileal mucosa of CD disease. In contrast, some genes encoding for lymphocyte receptors such as MS4A1, CD3D and CD79A were exclusively regulated in CD-MAT, exhibiting a different pattern of immune cell activation compared to the ileal mucosa in CD patients. qPCR and immunohistology confirmed the presence of large infiltrates of CD3+ CD20+ lymphocytes and CD138+ plasma cells in CD-MAT. CONCLUSION Our data strongly supports the role of CD-associated MAT as a site for T-, B- and plasma cell activation, and suggests that it could also act as a reservoir of memory immune responses.BACKGROUND Oligohydramnios is a condition of abnormally low amniotic fluid volume that has been associated with poor pregnancy outcomes. To date, the prevalence of this condition and its outcomes has not been well described in low and low-middle income countries (LMIC) where ultrasound use to diagnose this condition in pregnancy is limited. As part of a prospective trial of ultrasound at antenatal care in LMICs, we sought to evaluate the incidence of and the adverse maternal, fetal and neonatal outcomes associated with oligohydramnios. METHODS We included data in this report from all pregnant women in community settings in Guatemala, Pakistan, Zambia and the Democratic Republic of Congo (DRC) who received a third trimester ultrasound as part of the First Look Study, a randomized trial to assess the value of ultrasound at antenatal care. Using these data, we conducted a planned secondary analysis to compare pregnancy outcomes of women with to those without oligohydramnios. Oligohydramnios was defined as measurgohydramnios including stillbirths (OR 5.16, 95%CI 2.07, 12.85), neonatal deaths less then 28 days (OR 3.18, 95% CI 1.18, 8.57), low birth weight (OR 2.10, 95% CI 1.44, 3.07) and preterm births (OR 2.73, 95%CI 1.76, 4.23). The mean birth weight was 162 g less (95% CI -288.6, - 35.9) with oligohydramnios. CONCLUSIONS Oligohydramnos was associated with worse neonatal, fetal and maternal outcomes in LMIC. Further research is needed to assess effective interventions to diagnose and ultimately to reduce poor outcomes in these settings. TRIAL REGISTRATION NCT01990625.
Read More: https://www.selleckchem.com/
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team