Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Although gene therapy has its conceptual origins in the treatment of Mendelian disorders, it has potential applications in regenerative medicine, including bone healing. Research into the use of gene therapy for bone healing began in the 1990s. Prior to this period, the highly osteogenic proteins bone morphogenetic protein (BMP)-2 and -7 were cloned, produced in their recombinant forms and approved for clinical use. Despite their promising osteogenic properties, the clinical usefulness of recombinant BMPs is hindered by delivery problems that necessitate their application in vastly supraphysiological amounts. This generates adverse side effects, some of them severe, and raises costs; moreover, the clinical efficacy of the recombinant proteins is modest. Gene delivery offers a potential strategy for overcoming these limitations. Our research has focused on delivering a cDNA encoding human BMP-2, because the recombinant protein is Food and Drug Administration approved and there is a large body of data on its effects in people with broken bones. However, there is also a sizeable literature describing experimental results obtained with other transgenes that may directly or indirectly promote bone formation. Data from experiments in small animal models confirm that intralesional delivery of BMP-2 cDNA is able to heal defects efficiently and safely while generating transient, local BMP-2 concentrations 2-3 log orders less than those needed by recombinant BMP-2. The next challenge is to translate this information into a clinically expedient technology for bone healing. Our present research focuses on the use of genetically modified, allografted cells and chemically modified messenger RNA.Streptococcus suis (S. suis) has been reported to be a highly invasive pathogen in swine, which causes severe infections like meningitis, arthritis and septicemia, and also a zoonotic agent for humans. Although many putative virulence factors (VFs) have been identified, the exact and wildly accepted virulence associated marker and pathogenesis mechanism of S. suis are still unclear. To establish connection of the genotypes with virulence phenotypes, we performed an "internal standard" method based on the zebrafish model to assess the virulence phenotypes of S. suis and did the genome-wide association study (GWAS) based on the genomes of 68 S. suis isolates. Through GWAS, a total number of 172 genes were identified. Among these genes, 143 of them distribute in virulent isolates. Further VFs interaction network analysis based on protein-protein interaction database found that 71 genes identified in this study could interact with known VFs and some of them even played an important role as the bridge between known VFs or formed important hub. In addition, 12 genes were found conserved in virulent isolates and 3 genes were conserved in avirulent isolates, 8 genes of the virulent conserved genes were belonging to a srtBCD pili cluster. Considering that sbp2', a member of the srtBCD pili cluster has been reported as a virulence-associated factor, we predict that sbp2' could be a fitness virulence-associated marker of virulent isolates. Taken together, our findings contribute to the insights in S. suis pathogenesis, enhance the knowledge of the genomic evolution of S. suis and provide several novel virulence-associated candidates.Candida albicans (C. albicans) is a common cause of vulvovaginal candidiasis (VVC). In this paper, the genetic diversity and molecular epidemiology of 173C. albicans strains were investigated by multilocus sequence typing (MLST). A total of 52 diploid sequence types (DSTs) were recognized, and 27 (51.9%) of which have not been reported in the MLST database. Genotyping was performed on the multiple isolates collected from patients with recurrent VVC (RVVC, referring to VVC which attacks more than 4 times in one year) in different acute infectious phases. The results showed that 59.1% (26/44) of the patients suffered a relapse, with DST 79 (65.4%) as the dominant genotype. 6-OHDA The etiology of the remaining 40.9% (18/44) of patients was reinfection, and the main genotypes included DST 79 (33.3%), DST 124 (8.6%) and DST 1895 (8.6%). DST 79 (45%) and DST 1395 (7.5%) were the main isolates of VVC patients, while DST 79 (24.1%), DST 727 (6.9%), DST 732 (6.9%) and DST 1867 (6.9%) were the main types of healthy volunteers. The results of the genotypes between RVVC patients and other groups were statistically different. Furthermore, cluster analysis was carried out on 1468 isolates, among which 1337 were downloaded from the MLST database, 130 were divided into 8 Clades in the present study and the remaining one was taken as a singleton. 92.3% isolates from relapse patients, 58.3% isolates from re-infected patients, 77.5% isolates from VVC patients and 51.7% isolates from volunteers were distributed in Clade 1. The analysis of the genotypes of multiple isolates from RVVC patients further demonstrated that point mutation and loss of heterozygosity contributed to the microevolution of C. albicans.Evidence is mounting that abnormal vascular remodeling (VR) is a vital pathological event that precedes many cardiovascular diseases (CVD). This provides us with a new research perspective that VR can be a pivotal target for CVD treatment and prevention. However, the current drugs for treating CVD do not fundamentally reverse VR and repair vascular function. The reason may be that a complicated regulatory network is formed between the various signaling pathways involved in VR. Recently, ginsenoside, the main active substance of ginseng, has become increasingly the focus of many researchers for its multiple targets, multiple pathways, and few side effects. Several data have revealed that ginsenosides can improve VR caused by vasodilation dysfunction, abnormal vascular structure and blood pressure. This review is intended to discuss the therapeutic effects and mechanisms of ginsenosides in some diseases involved in VR. Besides, we herein also give a new and contradictory insight into intracellular and molecular signaling of ginsenosides in all kinds of vascular cells. Most importantly, we also discuss the feasibility of ginsenosides Rb1/Rg1/Rg3 in drug development by combining the pharmacodynamics and pharmacokinetics of ginsenosides, and provide a pharmacological basis for the development of ginsenosides in clinical applications.
My Website: https://www.selleckchem.com/products/oxidopamine-hydrobromide.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team