Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Thus, anodizing of AZ91D in the conditions stated here induced an adequate short-term in vivo response, which postulates their use as potential biodegradable fracture fixation devices for bone healing.Although a plethora of gene carriers have been developed for potential gene therapy, imageable stimuli-responsive gene vectors with fast access to the nucleus, high biocompatibility, and transfection efficiency are still scarce. read more Herein, we report the design and synthesis of four dendrite-shaped cationic liposomes, MPA-HBI-R/DOPE (R n-butyl, 1; n-octyl, 2; n-dodecyl, 3; palmyl, 4), prepared via esterification of 4-alkoxybenzylideneimidazolinone containing aliphatic chains of different lengths (HBI-R), the green fluorescent protein (GFP) chromophore, with a di[12]aneN3 unit. Liposomes were fabricated via the self-assembly of MPA-HBI-R, assisted with 1,2-dioleoyl-sn-glycerol-3-phosphorylethanolamine (DOPE). These liposomes (MPA-HBI-R/DOPE) exhibited efficient DNA condensation, pH-responsive degradation, excellent cellular biocompatibility (up to 150 μM), and high transfection efficiency. Molecular docking experiments were also used to verify the optimal interaction between MPA-HBI-R and DNA, as well as the fluorescence enhancements. In particular, MPA-HBI-2/DOPE delivered DNA into the nucleus in less than an hour, and its luciferase transfection activity was more than 10 times that by Lipo2000, across multiple cell lines. The GFP chromophore conjugation allowed trackable intracellular delivery and release of DNA in real time via fluorescence imaging. Furthermore, efficient red fluorescent protein (RFP) transfection in zebrafish, with an efficiency of more than 6 times that by Lipo2000, was also achieved. The results not only realized, for the first time, the combination of gene delivery and GFP-simulated light emission, allowing fluorescent tracking and highly efficient gene transfection, but also offered valuable insights into the use of biomimetic chromophore for the development of the next-generation nonviral vectors.Along with the increasing cancer incidence, developing suitable drug delivery systems (DDSs) is becoming urgent to control drug release and further enhance therapeutic efficiency. Herein, a Fe-Zn bimetallic MOF-derived ferromagnetic nanomaterial was synthesized by a one-step method. The successful preparation of ferromagnetic Fe-ZIF-8 was verified by scanning electron microscopy, powder X-ray diffraction, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy, and physical property measurement system characterizations. Furthermore, the release behaviors of 5-FU from the ferromagnetic carrier were investigated in a simulative cancer microenvironment of PBS buffer solution (PBS = phosphate-buffered saline, pH = 5.8) and NaHS solution. The vehicle in PBS solution of pH = 5.8 and NaHS solution of 500 μM can rapidly release 5-FU with the cumulative release percentages of 68 and 36%, respectively, within two hundred minutes. The release mechanism in the weak acid environment can be mainly attributed to the decomposition of the Fe-ZIF-8. However, the strong interaction between Zn and Fe atoms in Fe-ZIF-8 and the S atom in H2S plays an important role in the release process in the simulated H2S cancer microenvironment. The investigation of release kinetic models indicates that the 5-FU release in the PBS solutions and NaHS solution of 500 μM can be accurately fitted by a second-degree polynomial model and first-order model, respectively. In addition, the decomposition products, zinc, iron, and 2-MeIM, are endogenous and show low toxicity values [LD50 (Zn) = 0.35 g·kg-1, LD50 (Fe) = 30 g·kg-1, and LD50 (2-MeIM) = 1.4 g·kg-1]. Therefore, the low-toxicity, pH and H2S dual-stimuli-responsive, and ferromagnetic nature make the obtained Fe-ZIF-8 an ideal candidate in the field of bioactive molecule delivery.A bolus is a kind of tissue equivalent material used in radiotherapy for treating superficial lesions. Despite the availability of various commercial boluses, it is hard for them to form full contact with the irregular surface of patients' skin, such as the scalp, nose, and ear, resulting in air gaps and leading to a discrepancy between the delivered dose and planned dose. To solve this problem, we provided a photocurable bioink created from chitosan (CHI) for digital light processing (DLP) three-dimensional (3D) printing the bolus in radiotherapy application. The chitosan-based bioink (CHI-MA) was obtained by a methacrylation process using methacrylic anhydride (MA). Photosensitive crosslinkers with different molecular weights were introduced into the bioink. The photocuring efficiency and mechanical properties of CHI-MA hydrogels can be well modulated by varying the crosslinkers. This CHI-MA bioink allowed us to create complex structures with reliable biocompatibility, good flexibility, and excellent structural stability. Furthermore, the nose bolus processed by 3D printing this bioink proved to be a good fit for the nose model and showed a desirable radiotherapy effect. This suggests that DLP 3D printing of the CHI-MA bioink would be a promising approach to obtain the customized bolus in the application of radiotherapy.To date, various Prussian blue analogues (PBAs) have been prepared for biomedical applications due to their unique structural advantages. However, the safety and effectiveness of tumor treatment still need further exploration. This contribution reports a facile synthesis of PBA with superior tumor synergetic therapeutic effects and a detailed mechanistic evaluation of their intrinsic tumor metastasis inhibition activity. The as-synthesized PBA has a uniform cube structure with a diameter of approximately 220 nm and shows high near-infrared light (NIR) photoreactivity, photothermal conversion efficiency (41.44%), and photodynamic effect. Additionally, PBA could lead to a chemodynamic effect, which is caused by the Fenton reaction and ferroptosis. The combined therapy strategy of PBA exhibits notable tumor ablation properties due to photothermal therapy (PTT)/photodynamic therapy (PDT)/chemodynamic therapy (CDT) effects without obvious toxicity in vivo. The PBA has also shown potential as a contrast agent for magnetic resonance imaging (MRI) and photoacoustic (PA) imaging. More importantly, careful investigations reveal that PBA displays excellent biodegradation and anti-metastasis properties. Further exploration of the PBA implies that its underlying mechanism of intrinsic tumor metastasis inhibition activity can be attributed to the modulation of epithelial-mesenchymal transition (EMT) expression. The considerable potential exhibited by the as-synthesized PBA makes it an ideal candidate as a synergetic therapeutic agent for tumor treatment.In skeletal-muscle regeneration, it is critical to promote efferocytosis of immune cells and differentiation of satellite cells/postnatal muscle stem cells at the damaged sites. With the optimized poloxamer 407 composition gelled at body temperature, the drugs can be delivered locally. The purpose of this study is to develop a topical injection therapeutic agent for muscle regeneration, sarcopenia, and cachexia. Herein, we construct an injectable, in situ hydrogel system consisting of CD146, IGF-1, collagen I/III, and poloxamer 407, termed CIC gel. The secreted CD146 then binds to VEGFR2 on the muscle surface and effectively induces efferocytosis of neutrophils and macrophages. IGF-1 promotes satellite cell differentiation, and biocompatible collagen evades immune responses of the CIC gel. Consequently, these combined molecules activate muscle regeneration via autophagy and suppress muscle inflammation and apoptosis. Conclusively, we provide an applicable concept of the myogenesis-activating protein formulation, broadening the thermoreversible hydrogel to protein therapeutics for damaged muscle recovery.Uniform monodispersed nitrogen-doped carbon spheres have been emerging as an exciting platform for multipurpose medical applications like photothermal therapy and photoacoustic imaging and as carriers for aromatic anticancer drugs. However, synthesis of uniform N-doped mesoporous carbon of size less than 100 nm with reasonable photothermal and photodynamic activities is a challenging task. In this connection, the present paper reports synthesis of nitrogen-doped mesoporous carbon spheres (NMCSs) from five different copolymers of pyrrole and substituted aniline (-H, o-NH2, m-NH2, p-NH2, and m-NO2) using a soft template approach. It has been found that NMCSs synthesized from poly(pyrrole-co-m-nitroaniline) show uniform mesoporous particles of size 80 nm, a photothermal conversion efficiency η of 52.7%, and an average 1O2 quantum yield of 20% under exposure of a 980 nm NIR laser. With a high η of 52%, a multifunctional nanodrug has been formulated by loading 5-Fu in NMCS. The overall drug-loaded NMC was encapsulated by thermosensitive DSPE-PEG to improve translocation of the particle in the cell and thermosensitive drug release. A reliable release of anticancer drug 5-Fu (78%) has been achieved in 50 h in lysosomal conditions under 980 nm laser exposure. This NMC-5-Fu-DSPE-PEG nanodrug produces reactive oxygen species and enhances the therapeutic effect in comparison with free drug under an NIR laser as verified in B16F0 melanoma cells.There is an urgent clinical need for wound dressings to treat skin injuries, particularly full-thickness wounds caused by acute and chronic wounds. Marine collagen has emerged as an attractive and safer alternative due to its biocompatibility, diversity, and sustainability. It has minimum risk of zoonotic diseases and less religious constraints as compared to mammalian collagen. In this study, we reported the development of a self-assembled nanofibrous barramundi (Lates calcarifer) collagen matrix (Nano-BCM), which showed good biocompatibility for full-thickness wound-healing applications. The collagen was extracted and purified from barramundi scales and skin. Thereafter, the physicochemical properties of collagen were systematically evaluated. The process to extract barramundi skin collagen (BC) gave an excellent 45% yield and superior purity (∼100%). More importantly, BC demonstrated structural integrity, native triple helix structure, and good thermal stability. BC demonstrated its efficacy in promoting human primary dermal fibroblast (HDF) and immortalized human keratinocytes (HaCaT) proliferation and migration. Nano-BCM has been prepared via self-assembly of collagen molecules in physiological conditions, which resembled the native extracellular matrix (ECM). The clinical therapeutic efficacy of the Nano-BCM was further evaluated in a full-thickness splinted skin wound mice model. In comparison to a clinically used wound dressing (DuoDerm), the Nano-BCM demonstrated significantly accelerated wound closure and re-epithelization. Moreover, Nano-BCM nanofibrous architecture and its ability to facilitate early inflammatory response significantly promoted angiogenesis and differentiated myofibroblast, leading to enhanced wound healing. Consequently, Nano-BCM demonstrates great potential as an economical and effective nonmammalian substitute to achieve skin regeneration.
Read More: https://www.selleckchem.com/products/incb054329.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team