Notes
Notes - notes.io |
Both vascular endothelial growth factor (VEGF) and matrix metallopeptidase-9 (MMP-9) are key biomarkers in tumor angiogenesis. Determination of the overexpression of the two biomarkers would provide valuable information on the progression of tumor growth and metastasis, but their simultaneous quantification by a single probe is unprecedented. Selleckchem AM580 Here, we develop a triplex DNA-based nanoprobe for simultaneously quantifying VEGF and MMP-9 using an α-hemolysin nanopore. A DNA aptamer is used as the triplex molecular beacon (tMB) loop to bind VEGF, and a stem-forming oligonucleotide modified with a short peptide is used to recognize MMP-9. The sequential presence of VEGF and MMP-9 could also be identified by different patterns of current events. Besides, the characteristic current events generated by the DNA probe possess pH-dependent patterns that can be used to reflect the environmental pH. Success in the construction of such DNA nanoprobes will greatly facilitate the investigation of the mechanisms of different tumor angiogenesis processes and provide a useful approach for cancer diagnosis.A high-throughput single-cell analytical technique based on the microdroplet array integrated with the plasmon-enhanced-four-wave mixing (PE-FWM) imaging was developed, which is applicable for the highly sensitive and automatic assessment of the surface receptors of cells. The metal nanoprobes were prepared by simply decorating metal nanoparticles with capturing molecules (antibody or molecules with surface identification function). Owing to the multifrequency selection of lasers via resonating their plasmonic bands, these metal nanoprobes are highly recognizable under the FWM imaging and display high photostability above fluorescent dyes. This PE-FWM imaging technique shows superior to dark-field imaging due to almost no interference from off-resonant species and exhibits the antifade feature that is suitable for long-period cell monitoring. The automated processing of images is available for the analysis of cell heterogeneity according to the cell surface receptors. Emerging applications such as single-cell analysis, bioimaging, metabolite, and drug tracing offer many biological and medical possibilities with broad application prospects.Phase change materials (PCMs) store latent heat energy as they melt and release it upon freezing. However, they suffer from chemical instability and poor thermal conductivity, which can be improved by encapsulation. Here, we encapsulated a salt hydrate PCM (Mg(NO3)2·6H2O) within all-silica nanocapsules using a Pickering emulsion template. Electron microscopy analysis demonstrated robust silica-silica (RSS) shell formed inner silica layer of approximately 45 nm thickness, with silica Pickering emulsifiers anchored to the surface. The RSS nanostructured capsules are 300-1000 nm in size and have far superior thermal and chemical stability compared with that of the bulk salt hydrate. Differential scanning calorimetry showed encapsulated PCMs were stable over 500+ melt/freeze cycles (equivalent to 500+ day/night temperature difference) with a latent heat of 112.8 J·g-1. Thermogravimetric analysis displayed their impressive thermal stability, with as little as 37.2% mass loss at 800 °C. Raman spectroscopy proved the presence of salt hydrate within RSS capsules and illustrated the improved chemical stability compared to non-encapsulated Mg(NO3)2·6H2O. Energy capsule behavior compared with the bulk material was also observed at the macroscale with thermal imaging, showing that the melting/freezing behavior of the PCM is confined to the nanocapsule core. The thermal conductivity of the silica shell measured by laser flash thermal conductivity method is 1.4 ± 0.2 W·(m·K)-1, which is around 7 times more than the thermal conductivity of the polymer shell (0.2 W·(m·K)-1). RSS capsules containing PCMs have improved thermal stability and conductivity compared to polymer-based capsules and have good potential for thermoregulation or energy storage applications.A growing body of literature indicates that smell and taste impairment has frequently occurred during the Severe Acute Respiratory Syndrome (SARS)-like Coronavirus (SARS-CoV-2) outbreak. Experimental studies have mostly found that non-neural-type cells are responsible for SARS-CoV-2-related taste and smell impairment. If this is the case, smell/taste impairment needs to recover early. Literature data from clinical studies indicated a strong correlation between experimental and clinical findings. This article presents clinical studies related to SARS-CoV-2-induced smell/taste impairment that reported recovery rates. Experimental researchers may use these data to observe the dynamics of smell impairment and implement these findings in their research (e.g., correct timing of sampling) to perform further studies.Mucin type O-glycans play key roles in many cellular pro-cesses, and they are often altered in human diseases. A major challenge in studying the role of O-glycans through functional O-glycomics is the absence of a complete reper-toire of the glycans that comprise the human O-glycome. Here we describe a cellular O-glycome preparation strategy, Preparative Cellular O-glycome Reporter/Amplification (pCORA), that introduces 4-N3-Bn-GalNAc(Ac)3 as a novel precursor in large scale tissue cultures to generate usable amounts of O-glycans as a potential O-glycome factory. Cultured human non-small cell lung cancer (NSCLC) A549 cells take up the precursor, which is extended by cellular glycosyltransferases to produce 4-N3-Bn-α-O-glycans that are secreted into the culture medium. The O-glycan deriva-tives can be clicked with a fluorescent bifunctional tag that allows multidimensional HPLC purification and production of a tagged glycan library, representing the O-glycome of the corresponding cells. We obtained a ~5% conversion of precursor to O-glycans, and purified a tagged O-glycan library of over 100 O-glycan derivatives, many of which were present in >100nmol and were sequenced by sequen-tial MS fragmentation (MSn). These O-glycans were suc-cessfully printed onto epoxy glass slides as an O-glycome shotgun microarray. We used this novel array to explore binding activity of serum IgM in healthy person and NSCLC patients at different cancer stages. This novel strategy provides access to complex O-glycans in signifi-cant quantities and may offer a new route to discovery of potential diagnostic disease biomarkers.Phosphotyrosine (pTyr) signaling complexes are important resources of biomarkers and drug targets which often need to be profiled with enough throughput. Current profiling approaches are not feasible to meet this need due to either biased profiling by antibody-based detection or low throughput by traditional affinity purification-mass spectrometry approach (AP-MS), as exemplified by our previously developed photo-pTyr-scaffold approach. To address these limitations, we developed a 96-well microplate-based sample preparation and fast data independent proteomic analysis workflow. By assembling the photo-pTyr-scaffold probe into a 96-well microplate, we achieved steric hindrance-free photoaffinity capture of pTyr signaling complexes, selective enrichment under denaturing conditions, and efficient in-well digestion in a fully integrated manner. EGFR signaling complex proteins could be efficiently captured and identified by using 300 times less cell lysate and 100 times less photo-pTyr-scaffold probe as compared with our previous approach operated in an Eppendorf tube. Furthermore, the lifetime of the photo-pTyr-scaffold probe in a 96-well microplate was significantly extended from 1 week up to 1 month. More importantly, by combining with high-flow nano LC separation and data independent acquisition on the Q Exactive HF-X mass spectrometer, LC-MS time could be significantly reduced to only 35 min per sample without increasing sample loading amount and compromising identification and quantification performance. This new high-throughput proteomic approach allowed us to rapidly and reproducibly profile dynamic pTyr signaling complexes with EGF stimulation at five time points and EGFR inhibitor treatment at five different concentrations. We are therefore optimized for its generic application in biomarkers discovery and drug screening in a high-throughput fashion.Numerous engineering efforts have been made in Chinese hamster ovary (CHO) cells for high level production of therapeutic proteins. However, the dynamic regulation of transgene expression is limited in current systems. Here, we investigated the effective regulation of transgene expression in CHO cells via targeted integration-based endogenous gene tagging with engineering target genes. Targeted integration of EGFP-human Bcl-2 into the p21 locus effectively reduced the apoptosis, compared with random populations in which Bcl-2 expression was driven by cytomegalovirus (CMV) promoter. Endogenous p21 and EGFP-human Bcl-2 displayed similar expression dynamics in batch cultures, and the antiapoptotic effect altered the expression pattern of endogenous p21 showing the mutual influences between expression of p21 and Bcl-2. We further demonstrated the inducible transgene expression by adding low concentrations of hydroxyurea. The present engineering strategy will provide a valuable CHO cell engineering tool that can be used to control dynamic transgene expression in accordance with cellular states.How to fabricate Au nanostructures conveniently on microstructured/nanostructured arrays surface with low cost has become a crucial and urgent challenge. In this study, we demonstrate hierarchical flowerlike Au nanostructures with rich nanothorns (HF-AuNTs) through one-step electrochemical deposition. The morphology of the HF-AuNTs is easily manipulated by controlling the applied potential or precursor solution concentration of electrodeposition. The as-prepared HF-AuNTs possessing unique local morphology of thin petals and dense thorns are further applied in the Si micropit arrays to acquire HF-AuNTs microarrays. As an initial detection, these HF-AuNTs microarrays exhibit a fascinating surface-enhanced Raman spectroscopy consistency (relative standard deviation is 7.17%) and sensitivity with the limitation of crystal violet reaching to 10-10 M, and Rhodamine 6G reaching to 10-11 M. The HF-AuNTs microarrays with well-defined shape and elaborate structure may be applicated in SERS substrates, superhydrophobic materials, and so on.Global demand of green and clean energy is increasing day by day owing to the ongoing developments by human race that are changing the face of the earth at a rate faster than ever. Exploring the alternative sources of energy to replace fossil fuel consumption has become even more vital to control the growing concentration of CO2, and reduction of CO2 into CO or other useful hydrocarbons (e.g. C1 and C≥2 products) as well as reduction of N2 into ammonia can greatly help in this regard. Various materials are developed for the reduction of CO2 and N2. The introduction of pores in these materials by porosity engineering is demonstrated highly effective in increasing the efficiency of the involved redox reactions, over 40% increment for CO2 reduction up to date, by providing increased number of exposed facets, kinks, edges and catalytic active sites of catalysts. By shaping the surface porous structure, selectivity of redox reaction can also be enhanced. In order to better understand this area benefiting rational design for future solutions, this review systematically summarized and constructively discussed the porosity engineering in catalytic materials, including various synthesis methods, characterization on porous materials and the effects of porosity on performance of CO2 reduction and N2 reduction.
Read More: https://www.selleckchem.com/products/am580.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team