NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

By using agro-wastes for you to slow down aflatoxins combination by simply Aspergillus parasiticus: Any biotreatment involving a few cereal products with regard to safe and sound long-term storage.
The seismic data inversion from observations contaminated by spurious measures (outliers) remains a significant challenge for the industrial and scientific communities. This difficulty is due to slow processing work to mitigate the influence of the outliers. In this work, we introduce a robust formulation to mitigate the influence of spurious measurements in the seismic inversion process. In this regard, we put forth an outlier-resistant seismic inversion methodology for model estimation based on the deformed Jackson Gaussian distribution. To demonstrate the effectiveness of our proposal, we investigated a classic geophysical data-inverse problem in three different scenarios (i) in the first one, we analyzed the sensitivity of the seismic inversion to incorrect seismic sources; (ii) in the second one, we considered a dataset polluted by Gaussian errors with different noise intensities; and (iii) in the last one we considered a dataset contaminated by many outliers. The results reveal that the deformed Jackson Gaussian outperforms the classical approach, which is based on the standard Gaussian distribution.The transition to the use of supercritical carbon dioxide as a working fluid for power generation units will significantly reduce the equipment's overall dimensions while increasing fuel efficiency and environmental safety. Structural and parametric optimization of S-CO2 nuclear power plants was carried out to ensure the maximum efficiency of electricity production. Based on the results of mathematical modeling, it was found that the transition to a carbon dioxide working fluid for the nuclear power plant with the BREST-OD-300 reactor leads to an increase of efficiency from 39.8 to 43.1%. Nuclear power plant transition from the Rankine water cycle to the carbon dioxide Brayton cycle with recompression is reasonable at a working fluid temperature above 455 °C due to the carbon dioxide cycle's more effective regeneration system."What is heat?" was the title of a 1954 article by Freeman J. Dyson, published in Scientific American. Apparently, it was appropriate to ask this question at that time. The answer is given in the very first sentence of the article heat is disordered energy. We will ask the same question again, but with a different expectation for its answer. Let us imagine that all the thermodynamic knowledge is already available both the theory of phenomenological thermodynamics and that of statistical thermodynamics, including quantum statistics, but that the term "heat" has not yet been attributed to any of the variables of the theory. With the question "What is heat?" we now mean which of the physical quantities deserves this name? There are several candidates the quantities Q, H, Etherm and S. We can then formulate a desideratum, or a profile What properties should such a measure of the quantity or amount of heat ideally have? Then, we evaluate all the candidates for their suitability. It turns out that the winner is the quantity S, which we know by the name of entropy. In the second part of the paper, we examine why entropy has not succeeded in establishing itself as a measure for the amount of heat, and we show that there is a real chance today to make up for what was missed.A nested structure is a structural feature that is conducive to system stability formed by the coevolution of biological species in mutualistic ecosystems The coopetition relationship and value flow between industrial sectors in the global value chain are similar to the mutualistic ecosystem in nature. That is, the global economic system is always changing to form one dynamic equilibrium after another. In this paper, a nestedness-based analytical framework is used to define the generalist and specialist sectors for the purpose of analyzing the changes in the global supply pattern. We study why the global economic system can reach a stable equilibrium, what the role of different sectors play in the steady status, and how to enhance the stability of the global economic system. In detail, the domestic trade network, export trade network and import trade network of each country are extracted. Then, an econometric model is designed to analyze how the microstructure of the production system affects a country's macroeconomic performance.Biehl et al. (2021) present some interesting observations on an early formulation of the free energy principle. We use these observations to scaffold a discussion of the technical arguments that underwrite the free energy principle. This discussion focuses on solenoidal coupling between various (subsets of) states in sparsely coupled systems that possess a Markov blanket-and the distinction between exact and approximate Bayesian inference, implied by the ensuing Bayesian mechanics.Fault diagnosis of mechanical equipment is mainly based on the contact measurement and analysis of vibration signals. In some special working conditions, the non-contact fault diagnosis method represented by the measurement of acoustic signals can make up for the lack of contact testing. However, its engineering application value is greatly restricted due to the low signal-to-noise ratio (SNR) of the acoustic signal. To solve this deficiency, a novel fault diagnosis method based on the generalized matrix norm sparse filtering (GMNSF) is proposed in this paper. Specially, the generalized matrix norm is introduced into the sparse filtering to seek the optimal sparse feature distribution to overcome the defect of low SNR of acoustic signals. Firstly, the collected acoustic signals are randomly overlapped to form the sample fragment data set. Then, three constraints are imposed on the multi-period data set by the GMNSF model to extract the sparse features in the sample. Finally, softmax is used to as a classifier to categorize different fault types. The diagnostic performance of the proposed method is verified by the bearing and planetary gear datasets. Results show that the GMNSF model has good feature extraction ability performance and anti-noise ability than other traditional methods.We show that the most important measures of quantum chaos, such as frame potentials, scrambling, Loschmidt echo and out-of-time-order correlators (OTOCs), can be described by the unified framework of the isospectral twirling, namely the Haar average of a k-fold unitary channel. We show that such measures can then always be cast in the form of an expectation value of the isospectral twirling. In literature, quantum chaos is investigated sometimes through the spectrum and some other times through the eigenvectors of the Hamiltonian generating the dynamics. We show that thanks to this technique, we can interpolate smoothly between integrable Hamiltonians and quantum chaotic Hamiltonians. The isospectral twirling of Hamiltonians with eigenvector stabilizer states does not possess chaotic features, unlike those Hamiltonians whose eigenvectors are taken from the Haar measure. As an example, OTOCs obtained with Clifford resources decay to higher values compared with universal resources. By doping Hamiltonians with non-Clifford resources, we show a crossover in the OTOC behavior between a class of integrable models and quantum chaos. Moreover, exploiting random matrix theory, we show that these measures of quantum chaos clearly distinguish the finite time behavior of probes to quantum chaos corresponding to chaotic spectra given by the Gaussian Unitary Ensemble (GUE) from the integrable spectra given by Poisson distribution and the Gaussian Diagonal Ensemble (GDE).This paper works on building an effective massive multi-input multi-output (MIMO) relay system by increasing the achievable sum rate and energy efficiency. First, we design a two-hop massive MIMO relay system instead of a one-hop system to shorten the distance and create a Line-of-Sight (LOS) path between relays. Second, we apply Rician channels between relays in this system. Third, we apply low-resolution Analog-to-Digital Converters (ADCs) at both relays to quantize signals, and apply Amplify-and-Forward (AF) and Maximum Ratio Combining (MRC) to the processed signal at relay R1 and relay R2 correspondingly. Fourth, we use higher-order statistics to derive the closed-form expression of the achievable sum rate. Fifth, we derive the power scaling law and achieve the asymptotic expressions under different power scales. Last, we validate the correctness of theoretical analysis with numerical simulation results and show the superiority of the two-hop relay system over the one-hop relay system. From both closed-form expressions and simulation results, we discover that the two-hop system has a higher achievable sum rate than the one-hop system. Besides, the energy efficiency in the two-hop system is higher than the one-hop system. selleck chemical Moreover, in the two-hop system, when quantization bits q=4, the achievable sum rate converges. Therefore, deploying low-resolution ADCs can improve the energy efficiency and achieve a fairly considerable achievable sum rate.Pattern analysis is a widely researched topic in team sports performance analysis, using information theory as a conceptual framework. Bayesian methods are also used in this research field, but the association between these two is being developed. The aim of this paper is to present new mathematical concepts that are based on information and probability theory and can be applied to network analysis in Team Sports. These results are based on the transition matrices of the Markov chain, associated with the adjacency matrices of a network with n nodes and allowing for a more robust analysis of the variability of interactions in team sports. The proposed models refer to individual and collective rates and indexes of total variability between players and teams as well as the overall passing capacity of a network, all of which are demonstrated in the UEFA 2020/2021 Champions League Final.Time series analysis has been an important branch of information processing, and the conversion of time series into complex networks provides a new means to understand and analyze time series. In this work, using Variational Auto-Encode (VAE), we explored the construction of latent networks for univariate time series. We first trained the VAE to obtain the space of latent probability distributions of the time series and then decomposed the multivariate Gaussian distribution into multiple univariate Gaussian distributions. By measuring the distance between univariate Gaussian distributions on a statistical manifold, the latent network construction was finally achieved. The experimental results show that the latent network can effectively retain the original information of the time series and provide a new data structure for the downstream tasks.Cross-frequency phase-amplitude coupling (PAC) plays an important role in neuronal oscillations network, reflecting the interaction between the phase of low-frequency oscillation (LFO) and amplitude of the high-frequency oscillations (HFO). Thus, we applied four methods based on permutation analysis to measure PAC, including multiscale permutation mutual information (MPMI), permutation conditional mutual information (PCMI), symbolic joint entropy (SJE), and weighted-permutation mutual information (WPMI). To verify the ability of these four algorithms, a performance test including the effects of coupling strength, signal-to-noise ratios (SNRs), and data length was evaluated by using simulation data. It was shown that the performance of SJE was similar to that of other approaches when measuring PAC strength, but the computational efficiency of SJE was the highest among all these four methods. Moreover, SJE can also accurately identify the PAC frequency range under the interference of spike noise. All in all, the results demonstrate that SJE is better for evaluating PAC between neural oscillations.
Read More: https://www.selleckchem.com/products/ml324.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.