Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
We found that MHC-I molecules are significantly less expressed in cancer cells. Moreover, the local elastic modulus is significantly reduced in cancer cells. We speculate that these results might be related to the proven ability of cancer cells to evade the immune system, not only by reducing MHC-I cell surface expression but also by modifying the local mechanical properties affecting the overall morphology of MHC-I synapse presentation to immune cells.When fabricating ratiometric optical probes using lanthanide-doped upconversion nanoparticles (UCNPs), which are promising luminescent materials that have widely been utilized in biosensing and bioimaging as energy donors, it is still a challenge to obtain the emission signal of energy acceptors with reasons unclear so far. Herein, we reveal that the energy-transfer efficiency and brightness of UCNPs as well as the aggregation-caused quenching (ACQ) of energy accepting dyes are the main factors restricting the emission of energy acceptors, and we have circumvented this problem by modulating the structure of UCNPs and the assembly manner of the energy donor-acceptor pair. On this basis, a proof-of-concept ratiometric upconversion nanoprobe was constructed for hydrogen sulfide (H2S) detection with an elaborate dye Fl-1 as an energy acceptor. As the H2S concentration increased, the emission intensity of Fl-1 at 525 nm increased gradually, accompanied by a decrease of upconversion luminescence at 480 nm, thus providing a ratiometric signal of F480/F525 dependent on the H2S concentration. This probe was able to track H2S in living cells and zebrafish and visualize the H2S level of mice in physiological processes.One of the desired ways to improve robustness and crystallinity in the covalently linked reticular frameworks is through the incorporation of varied and key functionalities in these promising materials. In this work, we have strategically constructed a series of triazine-based amide-hydrazide linked COFs (CON, CONN, and CONNCO) by combining the flexible tri(4-formylphenoxy)cyanurate with semi-flexible 4-amino-N-(4-aminophenyl)benzamide, semi-flexible 4-aminobenzo-hydrazide, or flexible 4-amino-N-(4-aminobenzoyl)benzo-hydrazide linkages, respectively. The incorporation of an amide or a hydrazide functionality is the key to improving the crystallinity of the framework through strong intra- and interlayer H-bonding. The structural characterization of these COFs has been done with the help of numerous analytical methods. All three COFs exhibit good thermal and chemical stability in acid and base verified by PXRD and N2 sorption studies. Their intra- and interlayer H-bonding control the rotation in eclipsed layers, which follows emissive nature. Their stability, linkage functionality, and wettability in water have been judiciously used in fluorescent on-off pH responsive proton scavenging. The protonation-deprotonation of the imine N and N-H bond of the amide or hydrazide linkage adorned in the pore walls of three COFs plays a vital role for such an outcome.In consideration of the inferior rate performance and low sulfur utilization of lithium-sulfur batteries (LSBs), an effective strategy via combining polar materials with the conductive carbon sulfur host is widely applied. Herein, metal organic framework-derived in situ-developed ZnIn2S4@C is innovatively synthesized to mediate lithium polysulfide (LPS) conversion based on high electron conductivity and strong chemical interactions for advanced LSBs. Polar ZnIn2S4 possesses strong chemisorption in keeping with the DFT calculation results and catalytic for LPSs, ensuring a high sulfur utilization. Meanwhile, the hollow non-polar carbon frame possessing hierarchical pores not only provides internal space to contain active species but also accommodates efficient electronic transferring and diffusion of lithium ions in the process of cycling. The above advantages make the electrode possess promising stability and good rate performances, achieving long-term and high-rate cycling. Thus, under a sulfur loading of 1.5 mg cm-2, after 500 cycles, at 2 and 5 C, the as-prepared ZnIn2S4@C@S delivers reversible capacities of 734 mA h g-1 (75.7% of the initial capacity with a dropping rate of 0.015% per cycle) and 504 mA h g-1 (68.5% of the primal capacity with a dropping rate of 0.029% per cycle), respectively. Even at a high sulfur loading of 5.0 mg cm-2, at 5 C, 65.6% of the initial capacity can be maintained with a low fading rate of 0.430% per cycle after 500 loops with a high Coulombic efficiency of around 99.8%.Long-wave infrared (LWIR) photodetection is of high technological importance, having a wide range of applications that include thermal imaging and spectroscopy. Two-dimensional (2D) noble-transition-metal dichalcogenides, platinum diselenide (PtSe2) in particular, have recently shown great promise for infrared detection. However, previous studies have mainly focused on wavelengths up to the short-wave infrared region. In this work, we demonstrate LWIR photodetectors based on multilayer PtSe2. UNC5293 nmr In addition, we present an optical cavity substrate that enhances the light-matter interaction in 2D materials and thus their photodetection performance in the LWIR spectral region. The PtSe2 photoconductors fabricated on the TiO2/Au optical cavity substrate exhibit responsivities up to 54 mA/W to LWIR illumination at a wavelength of 8.35 μm. Moreover, these devices show a fast photoresponse with a time constant of 54 ns to white light illumination. The findings of this study reveal the potential of multilayer PtSe2 for fast and broadband photodetection from visible to LWIR wavelengths.Doped ferroelectric HfO2 is highly promising for integration into complementary metal-oxide semiconductor (CMOS) technology for devices such as ferroelectric nonvolatile memory and low-power field-effect transistors (FETs). We report the direct measurement of the energy barriers between various metal electrodes (Pt, Au, Ta, TaN, Ti/Pt, Ni, Al) and hafnium zirconium oxide (Hf0.58Zr0.42O2, HZO) using internal photoemission (IPE) spectroscopy. Results are compared with valence band offsets determined using the three-sample X-ray photoelectron spectroscopy (XPS) as well as the two-sample hard X-ray photoelectron spectroscopy (HAXPES) techniques. Both XPS and IPE indicate roughly the same dependence of the HZO barrier on metal work function with a slope of 0.8 ± 0.5. XPS and HAXPES-derived barrier heights are on average about 1.1 eV smaller than barrier heights determined by IPE, suggesting the presence of negative charge in the HZO.
Homepage: https://www.selleckchem.com/products/unc5293.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team