Notes
![]() ![]() Notes - notes.io |
Mutations in the genes that encode α- and β-tubulin underlie many neurological diseases, most notably malformations in cortical development. In addition to revealing the molecular basis for disease etiology, studying such mutations can provide insight into microtubule function and the role of the large family of microtubule effectors. In this study, we use budding yeast to model one such mutation-Gly436Arg in α-tubulin, which is causative of malformations in cortical development-in order to understand how it impacts microtubule function in a simple eukaryotic system. Using a combination of in vitro and in vivo methodologies, including live cell imaging and electron tomography, we find that the mutant tubulin is incorporated into microtubules, causes a shift in α-tubulin isotype usage, and dramatically enhances dynein activity, which leads to spindle-positioning defects. We find that the basis for the latter phenotype is an impaired interaction between She1-a dynein inhibitor-and the mutant microtubules. In addition to revealing the natural balance of α-tubulin isotype utilization in cells, our results provide evidence of an impaired interaction between microtubules and a dynein regulator as a consequence of a tubulin mutation and sheds light on a mechanism that may be causative of neurodevelopmental diseases.[Figure see text].[Figure see text].Isotopically labeled amino acids are widely used to study the structure and dynamics of proteins by NMR. Herein we describe a facile, gram-scale synthesis of compounds 1b and 2b under standard laboratory conditions from the common intermediate 7. 2b is obtained via simple deprotection, while 1b is accessed through a reductive deoxygenation/deuteration sequence and deprotection. 1b and 2b provide improved signal intensity using lower amounts of labeled precursor and are alternatives to existing labeling approaches.Thermally driven conformational fluctuations (or "breathing") of DNA play important roles in the function and regulation of the "macromolecular machinery of genome expression." Fluctuations in double-stranded (ds) DNA are involved in the transient exposure of pathways to protein binding sites within the DNA framework, leading to the binding of regulatory proteins to single-stranded (ss) DNA templates. These interactions often require that the ssDNA sequences, as well as the proteins involved, assume transient conformations critical for successful binding. Here, we use microsecond-resolved single-molecule Förster resonance energy transfer (smFRET) experiments to investigate the backbone fluctuations of short [oligo(dT)n] templates within DNA constructs that also serve as models for ss-dsDNA junctions. Such junctions, together with the attached ssDNA sequences, are involved in interactions with the ssDNA binding (ssb) proteins that control and integrate the functions of DNA replication complexes. We analyze these data using a chemical network model based on multiorder time-correlation functions and probability distribution functions that characterize the kinetic and thermodynamic behavior of the system. We find that the oligo(dT)n tails of ss-dsDNA constructs interconvert, on submillisecond time scales, between three macrostates with distinctly different end-to-end distances. These are (i) a "compact" macrostate that represents the dominant species at equilibrium; (ii) a "partially extended" macrostate that exists as minority species; and (iii) a "highly extended" macrostate that is present in trace amounts. We propose a model for ssDNA secondary structure that advances our understanding of how spontaneously formed nucleic acid conformations may facilitate the activities of ssDNA-associating proteins.We present a novel technique for computing the free energy differences between two chromophore "isomers" hosted in a molecular environment (a generalized solvent). Such an environment may range from a relatively rigid protein cavity to a flexible solvent environment. The technique is characterized by the application of the previously reported "average electrostatic solvent configuration" method, and it is based on the idea of using the free energy perturbation theory along with a chromophore annihilation procedure in thermodynamic cycle calculations. The method is benchmarked by computing the ground-state room-temperature relative stabilities between (i) the cis and trans isomers of prototypal animal and microbial rhodopsins and (ii) the analogue isomers of a rhodopsin-like light-driven molecular switch in methanol. Furthermore, we show that the same technology can be used to estimate the activation free energy for the thermal isomerization of systems i-ii by replacing one isomer with a transition state. The results show that the computed relative stability and isomerization barrier magnitudes for the selected systems are in line with the available experimental observation in spite of their widely diverse complexity.The dependence between the conformation of polystyrene (PS) and its molecular weight (Mw) in the vicinity of a metal interface was investigated by sum frequency generation (SFG) spectroscopy. Tilt angles θ ≥ 50° (the angle between the C2 axis of the pendant phenyl ring and the surface normal) were observed for all samples because of the interaction between the aromatic rings and the metal surface. Furthermore, it was found that θ decreases with increasing Mw for PS samples ranging from 20 × 103 g/mol to 400 × 103 g/mol. The intensity of the backbone SFG signal was higher for high Mw PS, compared to low Mw PS, indicating a greater number of backbone interactions with the silver substrate surface for the high Mw sample. These structural differences are driven by different entropic and enthalpic contributions to the free energy of adsorption for different polymer molecular weights. Differences in the polymer free volume and in the relative amount of chain ends with higher mobility may also influence the chain conformation. These results suggest that important interfacial properties of polymeric thin films, such as adhesion and wettability, could be tailored by modifying the polymer Mw to achieve the desired interfacial conformation.The separation of plasma from blood cells in whole blood is an essential step for many diagnostic and therapeutic applications. However, the current point-of-care plasma separation approaches have not yet satisfied the need for a rapid, high-flux, and low-cost process. Here, we report a portable, low-cost, disposable membrane-based plasma separation device that enables rapid plasma extraction from whole blood. Rapid separation of plasma can be obtained with a simple three-step operation blood injection, separation, and plasma collection. Our device benefits from the zwitterionic polyurethane-modified cellulose acetate (PCBU-CA) membrane, which can greatly inhibit the surface fouling of blood cells and membrane flux decline. The zwitterionic coating is stable on the membrane surface during blood filtration and leads to a 60% decrease in surface fibrinogen adsorption than a nonmodified membrane surface. The ultralow-blood-fouling properties of the PCBU-CA membrane enable rapid, continuous separation of plasma within 10 min, the device can yield 0.5-0.7 mL of plasma from 10 mL of whole blood. selleck products The extracted plasma is verified as cell-free, exhibits a low hemoglobin level, and has a high protein recovery. Our PCBU-CA membrane provides a pathway for developing a high-efficiency portable plasma separation device that can reduce the time to diagnosis, allow effective patient care, and eventually reduce hospital costs.A mild, efficient, and one-pot protocol for three-component carbosilylation of alkenes with imidazoheterocycle and silanes has been developed by merging iron(II) and visible-light photocatalysis. This C-C and C-Si bond-forming method provides functionalized organosilicon derivatives having imidazoheterocycles moieties in good yields. The reaction possibly proceeds through a radical pathway.Electrostatic interaction of the solvent with the solute and fluctuations of the solvent configurations may make excitation energies of the solute different from those in the gas phase. These effects may dominate photoinduced or chemical reaction dynamics in solution systems and can be observed as shifts or broadening of peaks in absorption spectra. In this work, the nitrogen K-edge X-ray absorption spectra were measured for pyridazine in the gas phase and in aqueous solution. The ultraviolet and X-ray absorption spectra of pyridazine in aqueous solution, as well as those in the gas phase, were then calculated with models based on the algebraic-diagrammatic construction through second order [ADC(2)] with the resolution-of-identity (RI) approximation and compared with the spectra obtained in experiments. For aqueous solution, explicit local solvation structures were extracted from an ab initio molecular dynamics (AIMD) trajectory of pyridazine in bulk water, and RI-ADC(2) was combined with the conductor-like screening model (COSMO). The experimental absorption spectra of pyridazine in aqueous solution were reproduced with good accuracy by theoretical treatment of an ensemble containing the explicit local solvation structures of pyridazine with relevant water molecules combined with the COSMO solvation model of water for long-range solvation.Roussi's landmark work on the generation of 1,3-dipoles from tertiary amine N-oxides has not reached its full potential since its underlying mechanism is neither well explored nor understood. Two competing mechanisms were previously proposed to explain the transformation involving either an iminium ion or a diradical intermediate. Our investigation has revealed an alternative mechanistic pathway that explains experimental results and provides significant insights to guide the creation of new N-oxide reagents beyond tertiary alkylamines for direct synthetic transformations. Truhlar's M06-2x functional and Møller-Plesset second-order perturbation theory with Dunning's [jul,aug]-cc-pv[D,T]z basis sets and discrete-continuum solvation models were employed to determine activation enthalpies and structures. During these mechanistic explorations, we discovered a unique multi-ion bridged pathway resulting from the rate-determining step, which was energetically more favorable than other alternate mechanisms. This newly proposed mechanism contains no electrophilic intermediates, strengthening the reaction potential by broadening the reagent scope and limiting the possible side reactions. This thoroughly defined general mechanism supports a more direct route for improving the use of N-oxides in generating azomethine ylide-dilithium oxide complexes with expanded functional group tolerance and breadth of chemistry.Kinase activity can be modulated reversibly or irreversibly by the reaction of targeted covalent inhibitors with nucleophilic residues in protein active sites. Herein, we present thiol reactivity studies that support α-methylene-γ-lactams as tunable surrogates for the highly reactive α-methylene-γ-lactones. The reactivity of the α-methylene is modulated via the N substituent, and the reaction rates toward glutathione were determined via mass spectrometry. Density functional theory calculations of transition states of thiol additions to α-methylene-γ-lactams revealed that the use of the M06-2X functional with the SMD solvation model and methyl thiolate as a model nucleophile reliably predicts the relative reactivities of the α-methylene-γ-lactams, and quasiharmonic approximations improve the agreement between experiment and computation.
Read More: https://www.selleckchem.com/
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team