NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Low-risk DCIS. The gender chart? View or even excise?
Along with the adoption of 5G, the development of neutral host solutions provides a unique opportunity for mobile networks operators to accommodate the needs of emerging use-cases and in the consolidation of new business models. By exploiting the concept of network slicing, as one key enabler in the transition to 5G, infrastructure and service providers can logically split a shared physical network into multiple isolated and customized networks to flexibly address the specific demands of those tenant slices. Motivated by this reality, the H2020 5GCity project proposed a novel 5G-enabled neutral host framework for three European cities Barcelona (ESP), Bristol (UK), and Lucca (IT). This article revises the main achievements and contributions of the 5GCity project, focusing on the deployment and validation of the proposed framework. The developed neutral host framework encompasses two main parts the infrastructure and the software platform. A detailed description of the framework implementation, in terms of functional capabilities and practical implications of city-wide deployments, is provided in this article. This work also presents the performance evaluation of the proposed solution during the implementation of real vertical use cases. Obtained results validate the feasibility of the neutral host model and the proposed framework to be deployed in city-wide 5G infrastructures.An experimental proof-of-concept for damage detection in composite beams using modal analysis has been conducted. The purpose was to demonstrate that damage features can be detected, located, and measured on the surface of a relatively complex thin-wall beam made from composite material. (1) Background previous work has been limited to the study of simple geometries and materials. (2) Methods damage detection in the work is based on the accurate measurement of mode shapes and an appropriate design of the detection mesh. Both a method requiring information about the healthy structure and a baseline-free method have been implemented. (3) Results short crack-type damage features, both longitudinal and transverse, were detected reliably, and the true length of the crack can be estimated from the damage signal. Simultaneous detection of two cracks on the same sample is also possible. (4) This work demonstrates the feasibility of automated damage detection in composite beams using sensor arrays.Many terminal sliding mode controllers (TSMCs) have been suggested to obtain exact tracking control of robotic manipulators in finite time. The ordinary method is based on TSMCs that secure trajectory tracking under the assumptions such as the known robot dynamic model and the determined upper boundary of uncertain components. Despite tracking errors that tend to zero in finite time, the weakness of TSMCs is chattering, slow convergence speed, and the need for the exact robot dynamic model. Few studies are handling the weakness of TSMCs by using the combination between TSMCs and finite-time observers. In this paper, we present a novel finite-time fault tolerance control (FTC) method for robotic manipulators. A finite-time fault detection observer (FTFDO) is proposed to estimate all uncertainties, external disturbances, and faults accurately and on time. From the estimated information of FTFDO, a novel finite-time FTC method is developed based on a new finite-time terminal sliding surface and a new finite-time reaching control law. Thanks to this approach, the proposed FTC method provides a fast convergence speed for both observation error and control error in finite time. beta-catenin pathway The operation of the robot system is guaranteed with expected performance even in case of faults, including high tracking accuracy, small chattering behavior in control input signals, and fast transient response with the variation of disturbances, uncertainties, or faults. The stability and finite-time convergence of the proposed control system are verified that they are strictly guaranteed by Lyapunov theory and finite-time control theory. The simulation performance for a FARA robotic manipulator proves the proposed control theory's correctness and effectiveness.Bounding box estimation by overlap maximization has improved the state of the art of visual tracking significantly, yet the improvement in robustness and accuracy is restricted by the limited reference information, i.e., the initial target. In this paper, we present DCOM, a novel bounding box estimation method for visual tracking, based on distribution calibration and overlap maximization. We assume every dimension in the modulation vector follows a Gaussian distribution, so that the mean and the variance can borrow from those of similar targets in large-scale training datasets. As such, sufficient and reliable reference information can be obtained from the calibrated distribution, leading to a more robust and accurate target estimation. Additionally, an updating strategy for the modulation vector is proposed to adapt the variation of the target object. Our method can be built on top of off-the-shelf networks without finetuning and extra parameters. It yields state-of-the-art performance on three popular benchmarks, including GOT-10k, LaSOT, and NfS while running at around 40 FPS, confirming its effectiveness and efficiency.Collateral vessels play an important role in the restoration of blood flow to the ischemic tissues of stroke patients, and the quality of collateral flow has major impact on reducing treatment delay and increasing the success rate of reperfusion. Due to high spatial resolution and rapid scan time, advance imaging using the cone-beam computed tomography (CBCT) is gaining more attention over the conventional angiography in acute stroke diagnosis. Detecting collateral vessels from CBCT images is a challenging task due to the presence of noises and artifacts, small-size and non-uniform structure of vessels. This paper presents a technique to objectively identify collateral vessels from non-collateral vessels. In our technique, several filters are used on the CBCT images of stroke patients to remove noises and artifacts, then multiscale top-hat transformation method is implemented on the pre-processed images to further enhance the vessels. Next, we applied three types of feature extraction methods which are gray level co-occurrence matrix (GLCM), moment invariant, and shape to explore which feature is best to classify the collateral vessels. These features are then used by the support vector machine (SVM), random forest, decision tree, and K-nearest neighbors (KNN) classifiers to classify vessels. Finally, the performance of these classifiers is evaluated in terms of accuracy, sensitivity, precision, recall, F-Measure, and area under the receiver operating characteristics curve. Our results show that all classifiers achieve promising classification accuracy above 90% and able to detect the collateral and non-collateral vessels from images.Obstructive sleep apnoea (OSA) is a global health concern, and polysomnography (PSG) is the gold standard for assessing OSA severity. However, the sleep parameters of home-based and in-laboratory PSG vary because of environmental factors, and the magnitude of these discrepancies remains unclear. We enrolled 125 Taiwanese patients who underwent PSG while wearing a single-lead electrocardiogram patch (RootiRx). After the PSG, all participants were instructed to continue wearing the RootiRx over three subsequent nights. Scores on OSA indices-namely, the apnoea-hypopnea index, chest effort index (CEI), cyclic variation of heart rate index (CVHRI), and combined CVHRI and CEI (Rx index), were determined. The patients were divided into three groups based on PSG-determined OSA severity. The variables (various severity groups and environmental measurements) were subjected to mean comparisons, and their correlations were examined by Pearson's correlation coefficient. The hospital-based CVHRI, CEI, and Rx index differed significantly among the severity groups. All three groups exhibited a significantly lower percentage of supine sleep time in the home-based assessment, compared with the hospital-based assessment. The percentage of supine sleep time (∆Supine%) exhibited a significant but weak to moderate positive correlation with each of the OSA indices. A significant but weak-to-moderate correlation between the ∆Supine% and ∆Rx index was still observed among the patients with high sleep efficiency (≥80%), who could reduce the effect of short sleep duration, leading to underestimation of the patients' OSA severity. The high supine percentage of sleep may cause OSA indices' overestimation in the hospital-based examination. Sleep recording at home with patch-type wearable devices may aid in accurate OSA diagnosis.The employment of smart meters for energy consumption monitoring is essential for planning and management of power generation systems. In this context, forecasting energy consumption is a valuable asset for decision making, since it can improve the predictability of forthcoming demand to energy providers. In this work, we propose a data-driven ensemble that combines five single well-known models in the forecasting literature a statistical linear autoregressive model and four artificial neural networks (radial basis function, multilayer perceptron, extreme learning machines, and echo state networks). The proposed ensemble employs extreme learning machines as the combination model due to its simplicity, learning speed, and greater ability of generalization in comparison to other artificial neural networks. The experiments were conducted on real consumption data collected from a smart meter in a one-step-ahead forecasting scenario. The results using five different performance metrics demonstrate that our solution outperforms other statistical, machine learning, and ensembles models proposed in the literature.Diabetes is a fatal disease that currently has no treatment. However, early diagnosis of diabetes aids patients to start timely treatment and thus reduces or eliminates the risk of severe complications. The prevalence of diabetes has been rising rapidly worldwide. Several methods have been introduced to diagnose diabetes at an early stage, however, most of these methods lack interpretability, due to which the diagnostic process cannot be explained. In this paper, fuzzy logic has been employed to develop an interpretable model and to perform an early diagnosis of diabetes. Fuzzy logic has been combined with the cosine amplitude method, and two fuzzy classifiers have been constructed. Afterward, fuzzy rules have been designed based on these classifiers. Lastly, a publicly available diabetes dataset has been used to evaluate the performance of the proposed fuzzy rule-based model. The results show that the proposed model outperforms existing techniques by achieving an accuracy of 96.47%. The proposed model has demonstrated great prediction accuracy, suggesting that it can be utilized in the healthcare sector for the accurate diagnose of diabetes.Network slicing is a powerful paradigm for network operators to support use cases with widely diverse requirements atop a common infrastructure. As 5G standards are completed, and commercial solutions mature, operators need to start thinking about how to integrate network slicing capabilities in their assets, so that customer-facing solutions can be made available in their portfolio. This integration is, however, not an easy task, due to the heterogeneity of assets that typically exist in carrier networks. In this regard, 5G commercial networks may consist of a number of domains, each with a different technological pace, and built out of products from multiple vendors, including legacy network devices and functions. These multi-technology, multi-vendor and brownfield features constitute a challenge for the operator, which is required to deploy and operate slices across all these domains in order to satisfy the end-to-end nature of the services hosted by these slices. In this context, the only realistic option for operators is to introduce slicing capabilities progressively, following a phased approach in their roll-out.
Read More: https://www.selleckchem.com/Wnt.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.