Notes
![]() ![]() Notes - notes.io |
The novelty of the usage of the blockchain technology lies in using a notary mechanism-based cross-chain interaction method to achieve value transfer between blockchains. The simulation results show that the proposed local electricity and carbon trading method has great performance in lowering total payments and carbon emissions for microgrids.Traffic signs detection and recognition is an essential and challenging task for driverless cars. However, the detection of traffic signs in most scenarios belongs to small target detection, and most existing object detection methods show poor performance in these cases, which increases the difficulty of detection. To further improve the accuracy of small object detection for traffic signs, this paper proposed an optimization strategy based on the YOLOv4 network. Firstly, an improved triplet attention mechanism was added to the backbone network. It was combined with optimized weights to make the network focus more on the acquisition of channel and spatial features. Secondly, a bidirectional feature pyramid network (BiFPN) was used in the neck network to enhance feature fusion, which can effectively improve the feature perception field of small objects. The improved model and some state-of-the-art (SOTA) methods were compared on the joint dataset TT100K-COCO. Experimental results show that the enhanced network can achieve 60.4% mAP(Mean Average Precision), surpassing the YOLOv4 by 8% with the same input size. With a larger input size, it can achieve a best performance capability of 66.4% mAP. This work provides a reference for research on obtaining higher accuracy for traffic sign detection in autonomous driving.Vehicular Ad-hoc network (VANET) is an imminent technology having both exciting prospects and substantial challenges, especially in terms of security. Due to its distributed network and frequently changing topology, it is extremely prone to security attacks. The researchers have proposed different strategies for detecting various forms of network attacks. However, VANET is still exposed to several attacks, specifically Sybil attack. Sybil Attack is one of the most challenging attacks in VANETS, which forge false identities in the network to undermine communication between network nodes. This attack highly impacts transportation safety services and may create traffic congestion. In this regard, a novel collaborative framework based on majority voting is proposed to detect the Sybil attack in the network. The framework works by ensembling individual classifiers, i.e., K-Nearest Neighbor, Naïve Bayes, Decision Tree, SVM, and Logistic Regression in a parallel manner. The Majority Voting (Hard and Soft) mechanism is adopted for a final prediction. A comparison is made between Majority Voting Hard and soft to choose the best approach. With the proposed approach, 95% accuracy is achieved. The proposed framework is also evaluated using the Receiver operating characteristics curve (ROC-curve).Problems such as low light, similar background colors, and noisy image acquisition often occur when collecting images of lunar surface obstacles. Given these problems, this study focuses on the AD-Census algorithm. Tacedinaline In the original Census algorithm, in the bit string calculated with the central pixel point, the bit string will be affected by the noise that the central point is subjected to. The effect of noise results in errors and mismatching. We introduce an improved algorithm to calculate the average window pixel for solving the problem of being susceptible to the central pixel value and improve the accuracy of the algorithm. Experiments have proven that the object contour in the grayscale map of disparity obtained by the improved algorithm is more apparent, and the edge part of the image is significantly improved, which is more in line with the real scene. In addition, because the traditional Census algorithm matches the window size in a fixed rectangle, it is difficult to obtain a suitable window in the image range of different textures, affecting the timeliness of the algorithm. An improvement idea of area growth adaptive window matching is proposed. The improved Census algorithm is applied to the AD-Census algorithm. The results show that the improved AD-Census algorithm has been shown to have an average run time of 5.3% and better matching compared to the traditional AD-Census algorithm for all tested image sets. Finally, the improved algorithm is applied to the simulation environment, and the experimental results show that the obstacles in the image can be effectively detected. The improved algorithm has important practical application value and is important to improve the feasibility and reliability of obstacle detection in lunar exploration projects.Today, aircraft composite structures are generally over-dimensioned to avoid catastrophic failure by unseen damages. This leads to a higher system weight and therefore an unwanted increase in greenhouse gas emissions. To reduce this parasitic mass, load monitoring can play an important role in damage detection. Additionally, the weight and volume of future aircraft structures can also be reduced by energy storing and load carrying structures so-called power composites. In this study a novel method of combining both approaches for maximum weight reduction is shown. This is achieved by using power composites as load monitoring sensors and energy suppliers. Therefore, supercapacitors are integrated into fiber reinforced polymers and are then used to investigate the mechanical load influence. By using four-point bending experiments and in situ electrochemical impedance spectroscopy, a strong relation between the mechanical load and the electrochemical system is found and analyzed using a model. For the first time, it is possible to detect small strain values down to 0.2% with a power composite. This strain is considerably lower than the conventional system load. The developed model and the impedance data indicate the possibility of using the composite as an energy storage as well as a strain sensor.The purpose of this article is to provide an overview of possible solutions to improve the performance of measurement and control processes in maritime engineering applications. This improvement can be basically provided by adopting techniques to enhance the reliability of measurement/control systems based on the 4-20 mA analogue standard. This aspect will be discussed through a Simscape Simulink model illustrating methods of noise and ground loops elimination for pressure measurement of a 4-20 mA current loop in the tank level measurement system on a bulk carrier commercial ship. Alternatively, improved measurement and control processes can be rendered by utilizing smart transmitters based on wired hybrid analogue-digital (Highway Addressable Remote Transducer (HART)), wired digital (Foundation Fieldbus (FF)) or wireless (wireless HART) communication protocols. A brief theoretical description of these protocols will be presented in this article. As an example of using smart transmitters, a simulation-based case study will analyze the possible options to implement non-intrinsically safe as well as intrinsically safe FF models for the tank level measurement system on a bulk carrier commercial ship. Conclusions obtained through analysis of the simulation results will characterize the behavior of FF segments in safe as well as explosive hazardous areas, highlighting the characteristics of field barriers and segment protectors used in conjunction with the HPTC (High-Power Trunk Concept) intrinsically safe model.Recent research on non-intrusive load monitoring, or load disaggregation, suggests that the performance of algorithms can be affected by factors beyond energy data. In particular, by incorporating non-electric data in load disaggregation analysis, such as building and consumer characteristics, the estimation accuracy of consumption data may be improved. However, this association has rarely been explored in the literature. This work proposes a data-centric methodology for measuring the effect of non-electric characteristics on load disaggregation performance. A real-world dataset is considered for evaluating the proposed methodology, using various appliances and sample rates. The methodology results indicate that the non-electric characteristics may have varying effects on the performances of different building appliances. Therefore, the proposed methodology can be relevant for complementing load disaggregation analysis.Camera attitude control systems for robots require a compact structure and high responsiveness. However, due to the combination structure of several actuators, the camera attitude control system is large. To address this issue, this study proposes a three-degree-of-freedom (3DOF) voice coil actuator. A single actuator is used to generate 3DOF motion, which is driven by a four-phase current. This study also describes the basic structure and operating principle of the actuator and clarifies the torque characteristics using a three-dimensional (3D) finite element method (FEM). Furthermore, the dynamic modeling and control methods are presented. The FEM and dynamic simulation results reveal that the proposed actuator can be arbitrarily driven in 3DOF.Conventional biometrics have been employed in high-security user-authentication systems for over 20 years now. However, some of these modalities face low-security issues in common practice. Brainwave-based user authentication has emerged as a promising alternative method, as it overcomes some of these drawbacks and allows for continuous user authentication. In the present study, we address the problem of individual user variability, by proposing a data-driven Electroencephalography (EEG)-based authentication method. We introduce machine learning techniques, in order to reveal the optimal classification algorithm that best fits the data of each individual user, in a fast and efficient manner. A set of 15 power spectral features (delta, theta, lower alpha, higher alpha, and alpha) is extracted from three EEG channels. The results show that our approach can reliably grant or deny access to the user (mean accuracy of 95.6%), while at the same time poses a viable option for real-time applications, as the total time of the training procedure was kept under one minute.In order to improve robust operating performance and enhance bus voltage stability, a learning observer-based fault-tolerant control strategy is proposed for the distributed generation in islanded microgrid with sensor faults and uncertain disturbances. Firstly, the output feedback control theory and the linear matrix inequality method are used to design closed-loop controller for the voltage source inverter of distributed generation; secondly, a fault-tolerant model and control structure of the distributed generation in an islanded microgrid with sensor faults is analyzed. By employing the fault output signal conversion filter and proportional derivative type learning observer, the online estimation and real-time compensation of the sensor fault signal are realized. Thirdly, the system synthesis of output feedback control and fault-tolerant control is completed. Finally, the multi-scenario sensor fault scheme simulation experiment verifies that the proposed control strategy has strong sensor fault tolerance and adaptability.
Homepage: https://www.selleckchem.com/products/ci994-tacedinaline.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team