Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Acute myeloid leukemia (AML) is a highly frequent hematological malignancy, characterized by clinical and biological diversity, along with high relapse and mortality rates. The inherent functional and genetic intra-tumor heterogeneity in AML is thought to play an important role in disease recurrence and resistance to chemotherapy. Patient-derived xenograft (PDX) models preserve important features of the original tumor, allowing, at the same time, experimental manipulation and in vivo amplification of the human cells. Here we present a detailed protocol for the generation of fluorescently labeled AML PDX models to monitor cell proliferation kinetics in vivo, at the single-cell level. Although experimental protocols for cell proliferation studies are well established and widespread, they are not easily applicable to in vivo contexts, and the analysis of related time-series data is often complex to achieve. To overcome these limitations, model-driven approaches can be exploited to investigate different aspects of cell population dynamics. Among the existing approaches, the ProCell framework is able to perform detailed and accurate stochastic simulations of cell proliferation, relying on flow cytometry data. In particular, by providing an initial and a target fluorescence histogram, ProCell automatically assesses the validity of any user-defined scenario of intra-tumor heterogeneity, that is, it is able to infer the proportion of various cell subpopulations (including quiescent cells) and the division interval of proliferating cells. Here we explain the protocol in detail, providing a description of our methodology for the conditional expression of H2B-GFP in human AML xenografts, data processing by flow cytometry, and the final elaboration in ProCell.Intense chemotherapy regimens of patients diagnosed with T cell acute lymphoblastic leukemia (T-ALL) have proved successful for improving patient's overall survival, especially in children. But still T-ALL treatment remains challenging, since side effects of chemotherapeutic drugs often worsen patient's quality of life, and relapse rates remain significant. Hence, the availability of experimental animal models capable of recapitulating the biology of human T-ALL is obligatory as a critical tool to explore novel promising therapies directed against specific targets that have been previously validated in in vitro assays. For this purpose, patient-derived xenografts (PDX) of primary human T-ALL are currently of great interest as preclinical models for novel therapeutic strategies toward transition into clinical trials. In this chapter, we describe the lab workflow to perform PDX assays, from the initial processing of patient T-ALL samples, genetic in vitro modifications of leukemic cells by lentiviral transduction, inoculation routes, monitoring for disease development, and mouse organ examination, to administration of several treatments.Hematopoietic stem cells have the ability to produce all blood cells. When hematological malignancies occur, transplant of compatible blood or bone marrow cells from a healthy donor to the patient is an efficient solution to restore normal hematopoiesis. Bone marrow transplant in a mouse model is often used to study HSC function and capacity to repopulate an irradiated recipient. This protocol details the different steps of a competitive bone marrow transplant experiment, beginning with total body irradiation of the recipient mice; preparation and administration of the donor and competitor bone marrow samples; peripheral blood analysis to follow reconstitution posttransplant; and finally, the analysis of recipient bone marrow and secondary transplants to evaluate long-term HSC function. Different formulas used to establish transplant efficiency are explained. All the steps are discussed in detail, including tips, variations, and alternative procedures with their advantages and disadvantages.Hematopoietic stem cells (HSCs) display heterogeneity in their characteristic features of undergoing self-renewal and multipotency within the blood system. While the same cell surface protein markers can be used to isolate HSCs from young and aged mice, recent studies have shown that their functional potential changes throughout the aging process. However, many of these conclusions have been the result of conventional HSC transplantation assays. These methods, though valuable, undermine not only the effective analysis of the underlying heterogeneity in aged HSC function, but also a full understanding of aged HSC differentiation potential to all five blood lineages. In this chapter, we describe a method to perform in vivo clonal analysis of aged HSCs using single-cell transplantation, incorporating a five-blood lineage tracing system using the Kusabira-Orange (KuO) trancsgenic mouse line.Leukemic stem cells are highly dynamic and heterogeneous. Analysis of leukemic stem cells at the single-cell level should provide a wealth of insights that would not be possible using bulk measurements. Mass spectrometry (MS)-based proteomic workflows can quantify hundreds or thousands of proteins from a biological sample and has proven invaluable for biomedical research, but samples comprising large numbers of cells are typically required due to limited sensitivity. Recent developments in sample processing, chromatographic separations, and MS instrumentation are now extending in-depth proteome profiling to single mammalian cells. Here, we describe specific techniques that increase the sensitivity of single-cell proteomics by orders of magnitude, enabling the promise of single-cell proteomics to become a reality. Selleck Tetramisole We anticipate such techniques can significantly advance the understanding of leukemic stem cells.Single-cell RNA sequencing (scRNA-Seq) allows the complete and unbiased analysis of the transcriptional state of an individual cell. In the past 5 years, scRNA-Seq contributed to the progress of the hematology field, advancing our knowledge of both normal and malignant hematopoiesis. Different scRNA-Seq methods are available, all relying on the conversion of RNA to cDNA, followed by amplification of cDNA in order to obtain a sufficient amount of genetic material for sequencing. Currently available scRNA-Seq platforms can be broadly divided into two categories droplet-based and plate-based. Each of these approaches has advantages and disadvantages that need to be considered when designing the experiment. Here, we describe detailed protocols of two of the most used methods for scRNA-Seq of hematopoietic cells Smart-Seq2 (plate-based) and 10× Genomics (droplet-based).Recurrent chromosomal translocations define genetic subtypes of childhood leukemia and present the first hit that generates an expanded clone of preleukemic cells in the bone marrow. Most commonly, reverse transcriptase PCR is used to detect these translocations on RNA level. This technique has severe drawbacks, including sensitivity to contamination and instability of RNA. Here, we describe the genomic inverse PCR for exploration of ligated breakpoints (GIPFEL) that overcomes these pitfalls.Next-generation sequencing (NGS) of immunoglobulin (IG) and T cell receptor (TR) rearrangements represents a modern alternative to classical RQ-PCR-based minimal residual disease (MRD) detection. The same primer sets and conditions can be used for all patients, which is undoubtedly one of the most important benefits of NGS, not only reducing the labor required to perform the analysis but also enabling the assay to comply with the upcoming EU IVD regulation. So far, only one standardized academic protocol for this task has been published, developed, and validated within the EuroClonality-NGS working group. In this chapter we describe the materials and methods for amplicon library preparation for sequencing on Illumina MiSeq, and the bioinformatic pipeline for this protocol.Although new techniques (i.e., droplet digital-PCR, next-generation sequencing, advanced flow cytometry) are being developed, DNA-based allele-specific real-time quantitative (RQ)-PCR is still the gold standard for sensitive and accurate immunoglobulin/T cell receptor (IG/TR)-based minimal residual disease (MRD) monitoring, allowing the detection of up to 1 leukemic cell in 100,000 normal lymphoid cells. We herewith describe the standard PCR procedure which has been developed and standardized (with minor modification in single labs) through the last 20 years of activity of the EuroMRD Consortium, a volunteer activity of expert laboratories that is continuously providing education, standardization, quality control rounds, and guidelines for interpretation of RQ-PCR data.Mass cytometry is now a well-established method that enables the measurement of 40-50 markers (generally proteins but transcripts are also possible) in single cells. Analytes are detected via antibodies tagged with heavy metal and detected by using a time-of-flight mass spectrometer. Over the past decade, mass cytometry has proven to be a valuable method for immunophenotyping hematopoietic cells with remarkable precision in both healthy and malignant scenarios. This chapter explains in detail how to profile hematopoietic cells by using this high-dimensional multiplexed approach.Flow cytometry has been widely used in basic and clinical research for analysis of a variety of normal and malignant cells. Hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs) can be highly purified by flow cytometry. Isolated HSCs and LSCs can be functionally identified by transplantation assays and can also be studied at the molecular level. Here we describe the flow cytometry methods for analysis and isolation of mouse HSCs and LSCs.The relative survival of cancer patients, when considering the tumoral stage at diagnosis, has not changed significantly in the last three decades, in spite of our increasingly detailed knowledge of the molecular alterations occurring in human tumors. In parallel, despite a growing number of clinical trials being conducted, the absolute number of drugs that are effective in humans is declining, and many new drugs move into the market without having enough evidence of their benefit on survival or quality of life. In part, this failure is due to the discordance between the results from preclinical and clinical trial phases, therefore leading to a high percentage of apparently promising lead compounds being abandoned in the transfer to the clinic. This discordance is caused, to a large degree, by the use of inappropriate animal models in the first stages of drug development. In this chapter, we discuss how the development of cancer therapies needs to be redesigned in order to achieve cancer cure, and how this redesign must involve the generation of better animal models, based on the tenets of the cancer stem cell theory, and capable of recapitulating all the aspects of human cancer. The use of such improved models should increase the likelihood of success in drug development, reducing the number of agents that go into trial, and the amount of patients undergoing useless trials.Only 10 years ago, the existence of cancer stem cells (CSCs) was still hotly debated. Even today, when their presence in most tumor types has been clearly demonstrated, all the consequences of their existence are far from being realized neither in the clinic nor, very often, in basic and translational cancer research. The existence of CSCs supposes a true change of paradigm in our understanding of cancer, but it will only have a real impact when we will properly assimilate its implications and apply these insights to both cancer research and cancer treatment. In this primer to the topic of leukemia stem cells (LSCs) our aim is to highlight with broad brushstrokes the most relevant of their properties, how these characteristics led to their identification, and the implications that the existence of LSCs has for the research and fight against leukemia.
Read More: https://www.selleckchem.com/products/tetramisole-hcl.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team