Notes
Notes - notes.io |
easing the relative abundance of Lactobacillus. Moreover, Akkermansia in the CSB was the highest in comparison to that in the CON and ANT. In addition, Kitasatospora that belongs to the phylum Actinobacteriota was only found in ileum of broilers fed the ANT diet. In summary, the supplement of 1000 mg/kg CSB in the diet improved the growth performance by promoting early development and function of the small intestine, which is associated with the regulation of intestinal flora and reestablishment of micro-ecological balance in broilers. Thus, CSB has great potential value as one of effective substitutes for in-feed antibiotics in the broiler industry.Extended-spectrum beta-lactamases (ESBLs) and AmpC producing Enterobacteriaceae are public health threats. This study aims to characterize ESBL and AmpC producing Enterobacteriaceae isolated from sepsis patients. A multicenter study was conducted at four hospitals located in central (Tikur Anbessa and Yekatit 12), southern (Hawassa) and northern (Dessie) parts of Ethiopia. Blood culture was performed among 1416 sepsis patients. Enterobacteriaceae (n = 301) were confirmed using MALDI-TOF and subjected for whole genome sequencing using the Illumina (HiSeq 2500) system. The overall genotypic frequencies of ESBL and AmpC producing Enterobacteriaceae were 75.5% and 14%, respectively. The detection of ESBL producing Enterobacteriaceae at Hawassa, Yekatit 12, Tikur Anbessa and Dessie was 95%, 90%, 82% and 55.8%, respectively. The detection frequency of blaCTX-M, blaTEM and blaSHV genes was 73%, 63% and 33%, respectively. The most frequently detected ESBL gene was blaCTX-M-15 (70.4%). The common AmpC genes were blaACT (n = 22) and blaCMY (n = 13). Of Enterobacteriaceae that harbored AmpC (n = 42), 71% were ESBL co-producers. Both blaTEM-1B (61.5%) and blaSHV-187 (27.6%) were the most frequently detected variants of blaTEM and blaSHV, respectively. The molecular epidemiology of ESBL producing Enterobacteriaceae showed high frequencies and several variants of ESBL and AmpC genes. Good antimicrobial stewardship and standard bacteriological laboratory services are necessary for the effective treatment of ESBL producing Enterobacteriaceae.Ceftazidime-avibactam and ceftolozane-tazobactam are approved for the treatment of complicated Gram-negative bacterial infections including multidrug-resistant (MDR) Pseudomonas aeruginosa. Resistance to both agents has been reported, but the underlying mechanisms have not been fully explored. This study aimed to correlate β-lactamases with phenotypic resistance to ceftazidime-avibactam and/or ceftolozane-tazobactam in MDR-P. aeruginosa from Qatar. A total of 525 MDR-P. aeruginosa isolates were collected from clinical specimens between 2014 and 2017. Identification and antimicrobial susceptibility were performed by the BD PhoenixTM system and gradient MIC test strips. Of the 75 sequenced MDR isolates, 35 (47%) were considered as having difficult-to-treat resistance, and 42 were resistant to ceftazidime-avibactam (37, 49.3%), and/or ceftolozane-tazobactam (40, 53.3%). They belonged to 12 sequence types, with ST235 being predominant (38%). Most isolates (97.6%) carried one or more β-lactamase genes, with blaOXA-488 (19%) and blaVEB-9 (45.2%) being predominant. A strong association was detected between class B β-lactamase genes and both ceftazidime-avibactam and ceftolozane-tazobactam resistance, while class A genes were associated with ceftolozane-tazobactam resistance. Co-resistance to ceftazidime-avibactam and ceftolozane-tazobactam correlated with the presence of blaVEB-9, blaPDC-35, blaVIM-2, blaOXA-10 and blaOXA-488. MDR-P. aeruginosa isolates resistant to both combination drugs were associated with class B β-lactamases (blaVIM-2) and class D β-lactamases (blaOXA-10), while ceftolozane-tazobactam resistance was associated with class A (blaVEB-9), class C (blaVPDC-35), and class D β-lactamases (blaOXA-488).We investigated the three probiotic bacteria and a processed yeast (GroPro-Aqua) as the replacers of antibiotics in juvenile olive flounder. A total of seven diets were used, that is, one basal or control (CON) diet; and six other diets, of which, three diets were prepared by supplementing probiotic bacteria such as Bacillus subtilis WB60 (BSWB60) at 1 × 108 CFU/g diet, Bacillus subtilis SJ10 (BSSJ10) at 1 × 108 CFU/g diet, and Enterococcus faecium SH30 (EFSH30) at 1 × 107 CFU/g diet; one diet with processed yeast (GRO) at 0.35% diet; and two other diets were supplemented with oxytetracycline (OTC) and amoxicillin (AMO) at 4 g/kg of each. Triplicate groups of fish (average 12.1 g) were fed one of the diets for eight weeks. At the end of the feeding trial, the fish that were fed the probiotic bacteria-supplemented diets had a significantly higher final weight, weight gain, and specific growth rate compared to the CON, OTC, and AMO diets. Fish that were fed the GRO diet had significantly higher feed efficiency ificantly higher villi length in fish that were fed the BSSJ10, BSWB60, EFSH30, and GRO diets compared to the CON diet. After 15 days of challenge test with pathogenic bacteria Edwardsiella tarda, the cumulative survival rate of fish that were fed the BSSJ10, BSWB60, EFSH30, and GRO diets were significantly higher than those of fish that were fed the CON diet. Overall, the results indicate that dietary supplementation of B. subtilis (108 CFU/g diet), E. faecium (107 CFU/g diet), and processed yeast (GroPro-Aqua at 0.35% diet) could replace the antibiotics in terms of improving growth, immunity, gut health, and disease resistance in juvenile olive flounder.Severe infectious complications remain the main cause of mortality in leukemia patients due to a long period of profound neutropenia. Standardized regimens for antimicrobial, antifungal, and antiviral prophylaxis and therapy in neutropenic patients have improved infection-associated mortality. Nevertheless, many patients are refractory to these multidrug approaches. Tigecycline is a last-resort antibiotic with a broad-spectrum activity; unfortunately, clinical experience in multidrug-resistant febrile neutropenia is limited. The aim was to evaluate the efficacy of tigecycline treatment in comparison to standard treatment in this patient cohort. In this single center analysis, we analyzed the clinical courses of 73 patients with acute leukemia and diagnosis of febrile neutropenia resistant to hospital-based multidrug escalation levels who continued on a standard approach without antibiotics as the last resort (n = 30) or were switched to tigecycline in addition to carbapenem treatment (n = 43). We observed comparable overall response rates (decrease in C-reactive protein or resolution of fever) in both patient cohorts. Switching the antibiotic approach to tigecycline showed lower absolute sepsis (33% vs. 47%, p = 0.235) and infection-associated mortality rates (5% vs. 13%, p = 0.221). Prospective larger randomized studies are necessary to underline these results and to be able to generate reliable statistics.A total of 114 Staphylococcus isolates from various infections of companion animals, including 43 feline Staphylococcus aureus, 19 canine S. aureus, 11 feline Staphylococcus pseudintermedius and 41 canine S. pseudintermedius were investigated for (i) their susceptibility to 24 antimicrobial agents and three combinations of antimicrobial agents by broth microdilution following CLSI recommendations and (ii) the corresponding resistance genes. In addition, the isolates were tested for their susceptibility to the four biocides benzalkonium chloride, chlorhexidine, polyhexanide and octenidine by a recently developed biocide susceptibility testing protocol. Penicillin resistance via blaZ was the dominant resistance property in all four groups of isolates ranging between 76.7 and 90.9%. About one quarter of the isolates (25.4%) proved to be methicillin-resistant and carried the genes mecA or mecC. Macrolide resistance was the second most prevalent resistance property (27.2%) and all isolates harbored the resistance genes erm(A), erm(B), erm(C), erm(T) or msr(A), alone or in combinations. Ripasudil Fluoroquinolone resistance was detected in 21.1% of all isolates tested, whereas tetracycline resistance via tet(K) and/or tet(M) occurred in 19.3% of the isolates. Resistance to last resort antimicrobial agents in human medicine was seen only in single isolates, if at all. The minimal inhibitory concentrations (MICs) of the four biocides showed unimodal distributions and were very similar for the four groups of staphylococci. Because of the large number of (multi)resistant isolates, antimicrobial susceptibility testing of feline and canine S. aureus and S. pseudintermedius isolates is highly recommended before the start of an antimicrobial chemotherapy. Moreover, no hints towards the development of biocide resistance were detected.Tripartite multidrug RND efflux systems made of an inner membrane transporter, an outer membrane factor (OMF) and a periplasmic adaptor protein (PAP) form a canal to expel drugs across Gram-negative cell wall. Structures of MexA-MexB-OprM and AcrA-AcrB-TolC, from Pseudomonas aeruginosa and Escherichia coli, respectively, depict a reduced interfacial contact between OMF and PAP, making unclear the comprehension of how OMF is recruited. Here, we show that a Q93R mutation of MexA located in the α-hairpin domain increases antibiotic resistance in the MexAQ93R-MexB-OprM-expressed strain. Electron microscopy single-particle analysis reveals that this mutation promotes the formation of tripartite complexes with OprM and non-cognate components OprN and TolC. Evidence indicates that MexAQ93R self-assembles into a hexameric form, likely due to interprotomer interactions between paired R93 and D113 amino acids. C-terminal deletion of OprM prevents the formation of tripartite complexes when mixed with MexA and MexB components but not when replacing MexA with MexAQ93R. This study reveals the Q93R MexA mutation and the OprM C-terminal peptide as molecular determinants modulating the assembly process efficacy with cognate and non-cognate OMFs, even though they are outside the interfacial contact. It provides insights into how OMF selectivity operates during the formation of the tripartite complex.The assumed link between high levels of antimicrobial use on farms and selection for antimicrobial-resistant (AMR) bacteria on that farm remains difficult to prove. In the pilot study presented here, we analysed total antimicrobial use on 50 dairy farms in Austria and also collected environmental samples to ascertain whether specific AMR bacteria were present. Antimicrobial use (AMU) analysis was based on electronic veterinary treatment records over a one-year period. Faecal samples for the assessment of extended-spectrum beta-lactamase (ESBL)-producing E. coli were collected from cowsheds, calf pens, and youngstock housing areas, as well as dust samples from barns, to isolate methicillin-resistant Staphylococcus aureus (MRSA). Bacteriological cultures were carried out on selective agar. Farms were split into groups of 25 of the highest antimicrobial users and 25 of the lowest users. Overall, samples from 13/50 (26.0%) farms were found to be positive for the presence of ESBL-producing E. coli. Of these, eight farms were in the low user group and five were in the high user group.
My Website: https://www.selleckchem.com/products/ripasudil-k-115.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team