Notes
![]() ![]() Notes - notes.io |
Plane-wave DFT calculations of 35Cl, 119Sn, and 195Pt NMR parameters are used to model and interpret experimental data, supported by computed 119Sn and 195Pt chemical shift tensor orientations. Given the ubiquity of directly bound Cl centers in organometallic and inorganic systems, there is tremendous potential for widespread usage of 35Cl SSNMR parameters to provide a reliable indication of the chemical state in metal chlorides.Cisplatin resistance in tumor cells is known mainly due to the reduced accumulation of platinum ions by efflux, detoxification by intracellular GSH, and nucleotide excision repair machinery-mediated nuclear DNA repair. In this work, theranostic Pt(IV)-NPs, which are precisely self-assembled by biotin-labeled Pt(IV) prodrug derivative and cyclodextrin-functionalized IR780 in a 11 molecular ratio, have been developed for addressing all these hurdles via mitochondria-targeted chemotherapy solely or chemophotothermal therapy. In these nanoparticles, IR780 as a small-molecule dye acts as a mitochondria-targeting ligand to make Pt(IV)-NPs relocate finally in the mitochondria and release cisplatin. As demonstrated by in vitro and in vivo experiments, Pt(IV)-NPs can markedly facilitate cancer-specific mitochondrial targeting, inducing mitochondrial dysfunction and mitochondrial DNA (mtDNA) damage, thus greatly increasing the Pt accumulation, reducing the GSH levels, and avoiding DNA repair machinery in cisplatin-resistant cancer cells (A549R), finally resulting in significant inhibition of A549R tumor growth on animal models by chemotherapy solely. Upon near-infrared irradiation, mitochondria-targeted chemophotothermal synergistic therapy can be realized, further overcoming cisplatin resistance and even eliminating A549R tumors completely. Moreover, such novel Pt(IV)-NPs integrate multimodal targeting (cancer and mitochondria targeting), imaging (near-infrared imaging and photoacoustic imaging), and therapeutic (chemo- and photothermal therapy) moieties in a constant ratio (111) into a single, reproducible, and structurally homogeneous entity, avoiding nonuniform drug loading and premature leakage as well as the discrete steps of imaging and therapy, which thus is more beneficial for precise therapeutics and future clinical translation.Time-resolved (TRA)-ICPMS has become a booming subfield of single-cell analysis tools in recent years, while generation of single cells remains the major challenge. Microfluidic devices reveal their great capability and potential in encapsulation of single cells into water droplets. However, current strategies to pinch off droplets require a specific oil phase, which is not compatible to conventional ICPMS and makes the signal of cells in the water phase susceptible. Herein, we built a 3D water-in-gas microfluidic device (3D W/G MFD) with commercially available components, producing single cell droplet enclosed by argon gas. By simply tuning the flow rate of gas and water, the droplets were generated to encapsulate single cells, which significantly reduced the probability of the single signal coming from multiple cells by 1 or 2 orders of magnitude compared to direct injection. The developed oil-free 3D W/G MFD was more friendly to online coupling with TRA-ICPMS than water-in-oil devices. The effect of Cd2+ on HepG2 cells was studied by single cell detecting total Zn with 3D W/G MFD-TRA-ICPMS, and the variation of labile Zn was explored by flow cytometry with an N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide probe. To the best of our knowledge, this work pioneered the exploration of variation in cellular metal content and speciation at the single-cell level, compensating for the deficiency of speciation analysis based on TRA-ICPMS and providing new insights into exploring the complexity of biology.Syntheses of square planar (SP) coordination complexes of gallium(III) are reported herein. Using the pyridine diimine ligand (PDI), we prepared both (PDI2-)GaH (4) and (PDI2-)GaCl (5), which were spectroscopically and structurally characterized. Reduction of PDI using Na metal afforded "Na2PDI", which reacts with in situ-prepared "GaHCl2" or GaCl3 to afford the SP 4 and 5. The planar geometry of these and previously reported SP Al(III) complexes is attributed to energetic stabilization derived from a ring-current effect, or metalloaromaticity. Typically, aromaticity in metal-containing ring systems can be difficult to characterize or confirm experimentally. An experimental approach employing proton NMR spectroscopy and described here provided an estimate of a downfield chemical shift promoted by a small ring-current associated with metalloaromaticity. Near infrared spectroscopic analyses display ligand-metal charge transfer bands which support the assignment of aromaticity. Oxalacetic acid molecular weight The SP complexes (PDI2-)AlH (1), (PDI2-)AlCl (2), (PDI2-)AlI (3), 4, and 5 are all discussed in this report, using aromaticity as a model for their electronic structure and reactivity properties.ConspectusBuilding high-energy-density batteries is urgently demanded in contemporary society because of the continuous increase in global energy consumption and the quick upgrade of electronic devices, which promotes the use of high-capacity lithium metal anodes and high-voltage cathodes. Achieving a stable interface between electrolytes and highly reactive electrodes is a prerequisite to constructing a safe and powerful battery, in which electrolyte regulation plays a decisive role and largely determines the long-term and rate performances. The bulk and interfacial properties of electrolytes are directly determined by the fundamental interactions and the as-derived microstructures in electrolytes. Different from experimental trial-and-error approaches, the rational bottom-up design of electrolytes based on a comprehensive and deep understanding of the fundamental interactions between electrolyte compositions and the structure-function relationship is highly expected to accelerate breaking through the bottleand even universal electrochemistry in solutions, including fuel cells and various electrocatalyses.As more researchers have acknowledged that the aggregation of amyloid β (Aβ) peptides might only be a pathological phenomenon that appears during the course of Alzheimer's disease (AD), it is therefore of great significance to have a preclinical or an early clinical diagnosis. Cu2+ dyshomeostasis and oxidative stress, such as hydroxyl radical (•OH), are found to be associated with peptide aggregations. However, we still do not know how the levels of Cu2+ and •OH are altered in the brain before massive Aβ plaques appear. Herein, we demonstrated the design and application of a sensitive electrochemical sensor to monitor Cu2+ and •OH simultaneously in one system without obvious cross-talk. The electrode was fabricated using black phosphorus-loaded Au (BP-Au) nanoparticles, which were then sequentially linked with DNA1, DNA2-labeled Au (Au-DNA2) nanoparticles, and methylene blue (MB). Cu2+ was first recognized and captured onto the sensor by BP with high selectivity and then produced a reduction current at around -0.01 V. The •OH quantification was established on the cleavage of the hybrid structure between DNA1 and BP-Au upon the appearance of •OH in the phosphate-buffered saline (PBS), leading to the depletion of the voltammetric response of MB around -0.25 V. Good linear correlations were obtained over concentrations of 0.5-127.5 μM for Cu2+ and 0.5-96.0 μM for •OH. Most importantly, the developed sensor was successfully applied to track the variations of the two species in brain tissues from APP/PS1 transgenic AD mice at the early stages before massive Aβ plaques appeared.Several clinical trials are being conducted worldwide to investigate the protective effect of the bacillus Calmette-Guérin (BCG) vaccine against death in healthcare providers who are working directly with coronavirus disease 2019 (COVID-19) patients. Clinical studies suggested that certain live vaccines, particularly the BCG vaccine, could reduce the mortality due to other diseases caused by non-targeted pathogens, most probably through the nonspecific effects (heterologous effects). By the end of May 2020, the available information on the COVID-19 pandemic indicated the great effect of the BCG vaccine in reducing the number of COVID-19 death cases. The occurrence of death due to COVID-19 was found to be 21-fold lower in countries with a national BCG vaccination policy than in countries without such a policy, based on the medians of COVID-19 death case per 1 million of the population in these two groups of countries (p less then 0.001, MannWhitney test). Therefore, it can be concluded that the early establishment of a BCG vaccination policy in any country is a key element in reducing the number of COVID-19 and tuberculosis death cases.Background Clinical laboratories use internal quality control (QC) data to calculate standard deviation (SD) and coefficient of variation (CV) to estimate uncertainty of results and to interpret QC results. We examined the influence of different instruments, and QC and reagent lots on the CV calculated from QC data. Methods Results for BioRad Multiqual frozen liquid QC samples over a 2-year interval were partitioned by QC and reagent lots. The mean and CV were calculated for each partition for each of three Abbott Architect c8000 instruments for measuring serum alanine amino transferase (ALT), creatinine (enzymatic), glucose and sodium. Results CVs differed among partitions and instruments for two QC levels by 5.8- and 3.3-fold for ALT, by 4.7- and 2.1-fold for creatinine, by 2.0- and 2.6-fold for glucose, and by 2.1- and 2.0-fold for sodium. Pooled CVs for two QC levels varied among instruments by 1.78- and 1.11-fold for ALT, by 1.63- and 1.11-fold for creatinine, by 1.08- and 1.06-fold for glucose, and by 1.24- and 1.31-fold for sodium. Conclusions The CVs from QC data varied substantially among QC and reagent lots and for different identical specification instruments. The CV used to estimate uncertainty for a measurement result or as the basis for interpreting individual QC results must be derived over a sufficient time interval to obtain a pooled CV that represents "typical" performance of a measuring system. An estimate of uncertainty provided to users of laboratory results will itself have uncertainty that can influence medical decisions.
Metaplastic meningioma is an extremely rare subtype of World Health Organization (WHO) grade I meningioma. It has distinctive histological subtypes according to its own mesenchymal components. Owing to its scarcity, clinical or radiological features of a metaplastic meningioma are poorly described.
Between 2004 and 2018, we analyzed total 1814 cases surgically proven meningioma for 15 years. Among them, metaplastic meningioma was diagnosed in 11 cases. Magnetic resonance images were taken for all patients, and computed tomography scan was taken for 10 patients.
WHO grade I meningiomas were 1376 cases (75.9%), 354 cases (19.5%) in WHO grade II, and 84 cases (4.6%) in WHO grade III meningiomas. Metaplastic meningioma was 11 cases as 0.8% of WHO grade I meningioma and 0.6% of entire meningiomas for 15 years. Among the entire 11 metaplastic meningiomas, five tumors (45%) were diagnosed as a lipomatous subtype with rich fat components, four (36%) as an osseous subtype with extensive bone formation and two (18%) as a xanthomatous subtype.
Here's my website: https://www.selleckchem.com/products/oxalacetic-acid.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team