Notes
Notes - notes.io |
Nutrition is of utmost importance in chronic disease management and has often been described as the cornerstone of a variety of non-communicable diseases. In particular, type II diabetes mellitus (T2DM) represents a prevalent and global public health crisis. Lycopene, a bright red carotenoid hydrocarbon found in tomatoes and other red fruits and vegetables, has been extensively studied for its biological activities and treatment efficiency in diabetes care. Epidemiological investigations indicate that lycopene has potential antioxidant properties, is capable of scavenging reactive species, and alleviates oxidative stress in T2DM patients. This review aims to summarize the characteristics and mechanisms of action of lycopene as a potent antioxidant for T2DM. In addition, the evidence demonstrating the effects of lycopene on glycemic control and oxidative stress biomarkers in T2DM are also highlighted using animal and human studies as literature approach.The complexity of metabolites in traditional Chinese medicine (TCM) hinders the comprehensive profiling and accurate identification of metabolites. In this study, an approach that integrates enhanced column separation, mass spectrometry post-processing and result verification was proposed and applied in the identification of flavonoids in Dalbergia odorifera. Firstly, column chromatography fractionation, followed by liquid chromatography-tandem mass spectrometry was used for systematic separation and detection. Secondly, a three-level data post-processing method was applied to the identification of flavonoids. Finally, fragmentation rules were used to verify the flavonoid compounds. As a result, a total of 197 flavonoids were characterized in D. odorifera, among which seven compounds were unambiguously identified in level 1, 80 compounds were tentatively identified by MS-DIAL and Compound Discoverer in level 2a, 95 compounds were annotated by Compound discoverer and Peogenesis QI in level 2b, and 15 compounds were exclusively annotated by using SIRIUS software in level 3. This study provides an approach for the rapid and efficient identification of the majority of components in herbal medicines.Flavonoids, which are abundant in plants, are recognized for their antioxidant and anticancer roles in clinical applications. However, little is known about the molecular basis of flavonoid biosynthesis in fungi. In this study, we found that inclusion of leachate of Korshinsk peashrub (Caragana korshinskii) in the fermentation medium increased the total flavonoid content of the edible fungus Auricularia cornea by 23.6% relative to that grown in a control medium. Combined transcriptomic and non-targeted metabolomic analysis of the flavonoid biosynthesis pathway in A. cornea illustrated that there are important metabolites in the phenylpropanoid, coumarin and isoflavonoid biosynthesis pathways. In addition, we found that certain homologous genes encode phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO) and chalcone isomerase (CHI) in these biosynthesis pathways. These results, in this study, provide a new line for studying the regulation of flavonoid production in edible fungi.Skin aging is a complex process involving photoaging and glycation stress, which share some fundamental pathways and have common mediators. They can cause skin damage and collagen degradation by inducing oxidative stress and the accumulation of reactive oxygen species (ROS). Chenopodium formosanum (CF), also known as Djulis, is a traditional cereal in Taiwan. This study investigated the protection mechanisms of CF extract against ultraviolet (UV) radiation and advanced glycation end products (AGEs)-induced stress. The results indicated that CF extract had strong antioxidant and free radical scavenging effects. It could reduce UV-induced intracellular ROS generation and initiate the antioxidant defense system by activating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway in human skin fibroblasts. CF extract modulated mitogen-activated protein kinase (MAPK) and transformed growth factor-beta (TGF-β) signaling pathways to alleviate oxidative stress-induced skin aging. Moreover, the results revealed that CF extract not only promoted collagen synthesis but also improved aging-induced collagen degradation. CF extract attenuated AGEs-induced ROS production and the upregulation of receptor for AGEs (RAGE). The overall results suggest that CF extract provides an effective anti-aging strategy by preventing skin damage from oxidative stress and collagen loss with potent antioxidant, anti-photoaging, and antiglycation activities.Fingerprint (FP) representations of chemical structure continue to be one of the most widely used types of molecular descriptors in chemoinformatics and computational medicinal chemistry. One often distinguishes between two- and three-dimensional (2D and 3D) FPs depending on whether they are derived from molecular graphs or conformations, respectively. Primary application areas for FPs include similarity searching and compound classification via machine learning, especially for hit identification. For these applications, 2D FPs are particularly popular, given their robustness and for the most part comparable (or better) performance to 3D FPs. While a variety of FP prototypes has been designed and evaluated during earlier times of chemoinformatics research, new developments have been rare over the past decade. At least in part, this has been due to the situation that topological (atom environment) FPs derived from molecular graphs have evolved as a gold standard in the field. We were interested in exploring the question of whether the amount of structural information captured by state-of-the-art 2D FPs is indeed required for effective similarity searching and compound classification or whether accounting for fewer structural features might be sufficient. Therefore, pursuing a "structural minimalist" approach, we designed and implemented a new 2D FP based upon ring and substituent fragments obtained by systematically decomposing large numbers of compounds from medicinal chemistry. The resulting FP termed core-substituent FP (CSFP) captures much smaller numbers of structural features than state-of-the-art 2D FPs. However, CSFP achieves high performance in similarity searching and machine learning, demonstrating that less structural information is required for establishing molecular similarity relationships than is often believed. Given its high performance and chemical tangibility, CSFP is also relevant for practical applications in medicinal chemistry.Following the spread of the COVID-19 pandemic crisis, a race was initiated to find a successful regimen for postinfections. Among those trials, a recent study declared the efficacy of an antiviral combination of favipiravir (FAV) and molnupiravir (MLP). The combined regimen helped in a successful 60% eradication of the SARS-CoV-2 virus from the lungs of studied hamster models. Moreover, it prevented viral transmission to cohosted sentinels. Because both medications are orally bioavailable, the coformulation of FAV and MLP can be predicted. The developed study is aimed at developing new green and simple methods for the simultaneous determination of FAV and MLP and then at their application in the study of their dissolution behavior if coformulated together. A green micellar HPLC method was validated using an RP-C18 core-shell column (5 μm, 150 × 4.6 mm) and an isocratic mixed micellar mobile phase composed of 0.1 M SDS, 0.01 M Brij-35, and 0.02 M monobasic potassium phosphate mixture and adjusted to pH 3.1 at 1.0 mL min-1 flow rate. The analytes were detected at 230 nm. The run time was less than five minutes under the optimized chromatographic conditions. Four other multivariate chemometric model methods were developed and validated, namely, classical least square (CLS), principal component regression (PCR), partial least squares (PLS-1), and genetic algorithm-partial least squares (GA-PLS-1). The developed models succeeded in resolving the great similarity and overlapping in the FAV and MLP UV spectra unlike the traditional univariate methods. All methods were organic solvent-free, did not require extraction or derivatization steps, and were applied for the construction of the simultaneous dissolution profile for FAV tablets and MLP capsules. The methods revealed that the amount of the simultaneously released cited drugs increases up until reaching a plateau after 15 and 20 min for FAV and MLP, respectively. The greenness was assessed on GAPI and found to be in harmony with green analytical chemistry concepts.Near-infrared dyes were developed to be contrast agents due to their ability to improve the productivity of photoacoustic (PA) imaging and photothermal therapy (PTT) treatments. During the article, we described in detail the PA and PT effects of a category of organic molecules. F4-TCNQ could potentially cause a red-shift in the peak PA intensity. The results show that the PTT intensity of the near-infrared dyes with phenyl groups were higher than near-infrared dyes with thiophene groups. We also investigated the photodynamic treatment effect of C1b to demonstrate that these dyes are highly desirable in biochemistry. The high photoacoustic intensity of the organic molecules and the good yield of reactive oxygen species could indicate that these dyes have good potential for a wide range of imaging applications. Finally, we embedded the dye (C1b) in a liposomal hydrophobic phospholipid bilayer (C1b⊂L) to facilitate the application of hydrophobic dyes in biomedical applications, which can be absorbed by cells with good compatible and high stability for the imaging of cellular PA.Mushrooms fortified with iron (Fe) can offer a promising alternative to counter the worldwide deficiency problem. However, the factors that may influence the efficiency of fortification have not yet been fully investigated. The aim of this study was to compare the effects of three Fe forms (FeCl3 6H2O, FeSO4 7H2O, or FeHBED) in three concentrations (5, 10, or 50 mM) for three mushroom species (Pleurotus eryngii, P. ostreatus, or Pholiota nameko) on their chemical composition, phenolic compounds, and organic acid production. The most effective metal accumulation of all the investigated species was for the 50 mM addition. FeCl3 6H2O was the most favorable additive for P. eryngii and P. nameko (up to 145 and 185% Fe more than in the control, respectively) and FeHBED for P. ostreatus (up to 108% Fe more than in control). Additionally, P. nameko showed the highest Fe accumulation among studied species (89.2 ± 7.51 mg kg-1 DW). The creation of phenolic acids was generally inhibited by Fe salt supplementation. However, an increasing effect on phenolic acid concentration was observed for P. ostreatus cultivated at 5 mM FeCl3 6H2O and for P. eryngii cultivated at 5 mM FeCl3 6H2O and 5 mM FeSO4 7H2O. In the case of organic acids, a similar situation was observed. For P. ostreatus, FeSO4 7H2O and FeHBED salts increased the formation of the determined organic acids in fruiting bodies. P. eryngii and P. nameko were characterized by a much lower content of organic acids in the systems supplemented with Fe. Based on the obtained results, we recommend starting fortification by preliminarily indicating which form of the element is preferred for the species of interest for supplementation. D609 It also seems that using an additive concentration of 50 mM or higher is most effective.
Here's my website: https://www.selleckchem.com/products/d609.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team