NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Age-related declines in neurological uniqueness associate across human brain areas and result from equally decreased stability and also increased confusability.
19, p < 0.001) while the MoCA was only weakly associated with temporal variability (adjusted R2 = 0.05, p < 0.001). Under DT conditions, speed, stride length, and cadence decreased, while spatial variability, temporal variability, and stride duration increased with the largest effect size for speed. DT costs of stride length (β = 0.42) and age (β = 0.58) explained 18% of the MoCA variance. However, FOF was not associated with the DT costs of gait parameters. Gait difficulties in PD may exacerbate when cognitive tasks are added during walking. However, FOF does not appear to have a relevant effect on dual-task costs of gait.Recent engineering and neuroscience applications have led to the development of brain-computer interface (BCI) systems that improve the quality of life of people with motor disabilities. In the same area, a significant number of studies have been conducted in identifying or classifying upper-limb movement intentions. On the contrary, few works have been concerned with movement intention identification for lower limbs. Notwithstanding, lower-limb neurorehabilitation is a major topic in medical settings, as some people suffer from mobility problems in their lower limbs, such as those diagnosed with neurodegenerative disorders, such as multiple sclerosis, and people with hemiplegia or quadriplegia. Particularly, the conventional pattern recognition (PR) systems are one of the most suitable computational tools for electroencephalography (EEG) signal analysis as the explicit knowledge of the features involved in the PR process itself is crucial for both improving signal classification performance and providing more interpretability. In this regard, there is a real need for outline and comparative studies gathering benchmark and state-of-art PR techniques that allow for a deeper understanding thereof and a proper selection of a specific technique. This study conducted a topical overview of specialized papers covering lower-limb motor task identification through PR-based BCI/EEG signal analysis systems. To do so, we first established search terms and inclusion and exclusion criteria to find the most relevant papers on the subject. As a result, we identified the 22 most relevant papers. Next, we reviewed their experimental methodologies for recording EEG signals during the execution of lower limb tasks. In addition, we review the algorithms used in the preprocessing, feature extraction, and classification stages. Finally, we compared all the algorithms and determined which of them are the most suitable in terms of accuracy.During the last few decades, the poor quality of produced electric power is a key factor that has affected the operation of critical electrical infrastructure such as high-voltage equipment. This type of equipment exhibits multiple different failures, which originate from the poor electric power quality. This phenomenon is basically due to the utilization of high-frequency switching devices that operate over modern electrical generation systems, such as PV inverters. The conduction of significant values of electric currents at high frequencies in the range of 2 to 150 kHz can be destructive for electrical and electronic equipment and should be measured. However, the measuring devices that have the ability of analyzing a signal in the frequency domain present the ability of analyzing up to 2.5 kHz-3 kHz, which are frequencies too low in comparison to the high switching frequencies that inverters, for example, work. Electric currents at 16 kHz were successfully measured on an 8 kWp roof PV generator. This paper presents a fast-developed modern measuring system, using a field programmable gate array, aiming to detect electric currents at high frequencies, with a capability for working up to 150 kHz. The system was tested in the laboratory, and the results are satisfactory.Vibration analysis is an established method for fault detection and diagnosis of rolling element bearings. However, it is an expert oriented exercise. To relieve the experts, the use of Artificial Intelligence (AI) techniques such as deep neural networks, especially convolutional neural networks (CNN) have gained the attention of researchers because of their image classification and recognition capability. Most researchers convert the vibration signal into representative time frequency vibration images such as spectrograms and scalograms. These images are used as inputs to train the CNN model for fault diagnosis. Commonly, fault diagnosis is performed under same operating conditions, where models are trained and deployed for prediction under the same operating conditions. However, outside the laboratory environment, in real world applications, different operating conditions, such as variable speed, may be encountered. With the change in speed, the characteristic frequencies of the vibration signal will also cult diagnosis on rolling element bearings under variable speeds and loads with high accuracy.The performance of natural language processing with a transfer learning methodology has improved by applying pre-training language models to downstream tasks with a large number of general data. However, because the data used in pre-training are irrelevant to the downstream tasks, a problem occurs in that it learns general features rather than those features specific to the downstream tasks. In this paper, a novel learning method is proposed for embedding pre-trained models to learn specific features of such tasks. The proposed method learns the label features of downstream tasks through contrast learning using label embedding and sampled data pairs. To demonstrate the performance of the proposed method, we conducted experiments on sentence classification datasets and evaluated whether the features of the downstream tasks have been learned through a PCA and a clustering of the embeddings.Vision-based Lane departure warning system (LDWS) has been widely used in modern vehicles to improve drivability and safety. In this paper, a novel LDWS with precise positioning is proposed. Calibration strategy is first presented through a 3D camera imaging model with only three parallel and equally spaced lines, where the three angles of rotation for the transformation from the camera coordinate system to the world coordinate system are deduced. Then camera height is calculated compared to the previous works using a measured one with potential errors. A criterion for lane departure warning with only one of the two lane-markings is proposed to estimate both yaw angle and distance between the lane-markings and the vehicle. Experiments show that calibration strategy can be easily set up and achieve an average of 98.95% accuracy on the lane departure assessment.Distributed fibre optical sensing (DFOS) is increasingly used in civil engineering research. For reinforced concrete structures, almost continuous information concerning the deformations of embedded reinforcing bars can be obtained. This information enables the validation of basic and conventional assumptions in the design and modelling of reinforced concrete, particularly regarding the interaction of concrete and reinforcing bars. However, this relatively new technology conceals some difficulties, which may lead to erroneous interpretations. This paper (i) discusses the selection of sensing fibres for reinforced concrete instrumentation, accounting for strain gradients and local anomalies caused by stress concentrations due to the reinforcing bar ribs; (ii) describes suitable methods for sensor installation, strain acquisition and post-processing of the data, as well as determining and validating structurally relevant entities; and (iii) presents the results obtained by applying DFOS with these methods in a variety of experiments. The analysed experiments comprise a reinforced concrete tie, a pull-out test under cyclic load, and a flexural member in which the following mechanical relevant quantities are assessed the initial strain state in reinforcing bars, normal and bond shear stresses, deflections as well as forces. These applications confirm the benefit of DFOS to better understand the bond behaviour, but also demonstrate that its application is intricate and the results may lead to erroneous conclusions unless evaluated meticulously.In this paper, deep learning and image processing technologies are combined, and an automatic sampling robot is proposed that can completely replace the manual method in the three-dimensional space when used for the autonomous location of sampling points. It can also achieve good localization accuracy, which solves the problems of the high labor intensity, low efficiency, and poor scientific accuracy of the manual sampling of mineral powder. To improve localization accuracy and eliminate non-linear image distortion due to wide-angle lenses, distortion correction was applied to the captured images. We solved the problem of low detection accuracy in some scenes of Single Shot MultiBox Detector (SSD) through data augmentation. A visual localization model has been established, and the image coordinates of the sampling point have been determined through color screening, image segmentation, and connected body feature screening, while coordinate conversion has been performed to complete the spatial localization of the sampling point, guiding the robot in performing accurate sampling. Field experiments were conducted to validate the intelligent sampling robot, which showed that the maximum visual positioning error of the robot is 36 mm in the x-direction and 24 mm in the y-direction, both of which meet the error range of less than or equal to 50 mm, and could meet the technical standards and requirements of industrial sampling localization accuracy.With the development of deep learning, researchers design deep network structures in order to extract rich high-level semantic information. Selleckchem MS1943 Nowadays, most popular algorithms are designed based on the complexity of visible image features. However, compared with visible image features, infrared image features are more homogeneous, and the application of deep networks is prone to extracting redundant features. Therefore, it is important to prune the network layers where redundant features are extracted. Therefore, this paper proposes a pruning method for deep convolutional network based on heat map generation metrics. The 'network layer performance evaluation metrics' are obtained from the number of pixel activations in the heat map. The network layer with the lowest 'network layer performance evaluation metrics' is pruned. To address the problem that the simultaneous deletion of multiple structures may result in incorrect pruning, the Alternating training and self-pruning strategy is proposed. Using a cyclic process of pruning each model once and retraining the pruned model to reduce the incorrect pruning of network layers. The experimental results show that proposed method in this paper improved the performance of CSPDarknet, Darknet and Resnet.Military aircraft are subjected to variable loads, which are the main cause of initiation and propagation of cracks in the most stressed locations of the airframe. The aim of a Full-Scale Fatigue Test (FSFT) is to represent actual load conditions in such a way that the results obtained are a good representation of the actual loads and may be used as data that give insight into the development of real fatigue damage in critical locations. The FSFT load spectrum is a generalized depiction of the expected service loads and is designed to give an overall good representation of loads exerted on the airframe's structural elements during operation. Moreover, the discrete method of load application on the structure (exerting loads with hydraulic actuators rather than pressure fields or inertia loads expected in actual operation) may cause some local effects, which may not be present in operation. The proposed usage of direct strain data from the test include such local effects. Moreover, operational loads may vary between individual aircraft, therefore it is crucial to understand the whole process of fatigue crack onset and development in order to determine safe inspection intervals and thereby mitigate risk.
My Website: https://www.selleckchem.com/products/ms1943.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.