Notes
Notes - notes.io |
We investigated, whether epileptic seizures (ES) as presenting symptom in adult patients with GBM are associated with better Overall Survival (OS) compared to ES presenting later during the course of GBM, and efficacy and safety of different antiseizure medications (ASMs).
Retrospective consecutive cohort study of adults with GBM 50 from Norway and 50 from Italy. We compared the time to changing ASM treatments. OS was investigated with a Cox regression model adjusted for time dependency.
Median follow-up was 17 months from GBM diagnosis. ES were the presenting symptom in 49 patients. All patients received ASM treatment. LEV was the first ASM in the majority of patients and the most effective at one year from the first prescription, (p=0.004). Occurrence of adverse events (AEs) was similar between LEV and other ASMs (p=0.47). Poorer OS correlated with older age at GBM diagnosis, country and ASM therapy. A negative impact of ASMs on OS was observed for LEV in a univariate and multivariate analysis, and fois study along with the many variables which may affect the outcome in this population.Sudden unexpected death in epilepsy (SUDEP) has been identified as one of the most prevalent causes of mortality in epilepsy, and SUDEP has consequently become an important topic of research. selleck chemicals The causes appear multifactorial, including epilepsy-induced cardiac arrest. Current understanding of autopsy negative sudden unexplained death (SUD) in general population and its relation to sudden arrhythmic death syndrome (SADS) could shed some light in SUDEP. Mutual attention to the findings of sudden death in cardiology and epilepsy are discussed here. We performed a narrative review on SUDEP, epilepsy and molecular/genetic autopsy in this population. A proposal of an extended terminology for SUDEP classification is discussed in light of recent issues related to molecular autopsy and genetics. The extended classification might be a step forward in research protocols and a tool for better understanding SUDEP.
Despite its use in determining nigrostriatal degeneration, the lack of a consistent interpretation of nigrosome 1 susceptibility map-weighted imaging (SMwI) limits its generalized applicability. To implement and evaluate a diagnostic algorithm based on convolutional neural networks for interpreting nigrosome 1 SMwI for determining nigrostriatal degeneration in idiopathic Parkinson's disease (IPD).
In this retrospective study, we enrolled 267 IPD patients and 160 control subjects (125 patients with drug-induced parkinsonism and 35 healthy subjects) at our institute, and 24 IPD patients and 27 control subjects at three other institutes on approval of the local institutional review boards. Dopamine transporter imaging served as the reference standard for the presence or absence of abnormalities of nigrosome 1 on SMwI. Diagnostic performance was compared between visual assessment by an experienced neuroradiologist and the developed deep learning-based diagnostic algorithm in both internal and external datasets using a bootstrapping method with 10000 re-samples by the "pROC" package of R (version 1.16.2).
The area under the receiver operating characteristics curve (AUC) (95% confidence interval [CI]) per participant by the bootstrap method was not significantly different between visual assessment and the deep learning-based algorithm (internal validation, .9622 [0.8912-1.0000] versus 0.9534 [0.8779-0.9956], P=.1511; external validation, 0.9367 [0.8843-0.9802] versus 0.9208 [0.8634-0.9693], P=.6267), indicative of a comparable performance to visual assessment.
Our deep learning-based algorithm for assessing abnormalities of nigrosome 1 on SMwI was found to have a comparable performance to that of an experienced neuroradiologist.
Our deep learning-based algorithm for assessing abnormalities of nigrosome 1 on SMwI was found to have a comparable performance to that of an experienced neuroradiologist.This study examined the short term transfer of carbon-14 (14C) in the common carp Cyprinus carpio under laboratory conditions. Various experiments were achieved in order to investigate direct or trophic transfer for 4 days, using waterborne 14C-labelled arginine or 14C-labelled food pellets respectively. Radiolabelled food was prepared with 14C-labelled arginine or glucose in order to test how transfer kinetics might vary with the biochemical form of 14C. Elimination experiments were achieved using fish fed for 5 days on radiolabelled food and then placed under starvation for 4 days. In all experiments, water, food and fish activities were monitored every day. Different fish fractions (whole body, muscle) were sampled in order to elucidate the role of muscle as a potential storage. Results suggested that direct water-to-fish absorption rate was 20% d-1 per fish. Carps incorporated 14.3% of the absorbed 14C. Fish activity did not increase over days, due to a strong decrease in 14C concentration in the water (resulting from aquarium sorption). During trophic transfer experiments, food was entirely ingested and 14C sources rapidly assimilated. For either arginine or glucose, results suggested that 19-20% of ingested 14C was incorporated, yielding a significant increase in fish activity over days. No difference in mass-specific activity was observed among muscle and whole body. Total activity in the muscle represented 29%-32% of whole body activity, this proportion reflecting the contribution of muscle to whole body weight. During elimination experiments, results showed a significant decrease in whole body total activity and mass-specific activity with arginine. The decrease was not significant with glucose due to a great variability among fish. Results suggested that an essential amino-acid like arginine can be used as an energy source under starvation and that muscles can act as a storage for essential amino-acids.We carried out calculations of non-resonance Raman spectra of ß-carotene and polyenes CH2(CHCH)n-2CHCH2 using the density functional theory (DFT). We revealed that the peak positions and intensities of the CC and CC stretching bands depend on length of the polyene chain and type of the isomer. Our experimental non-resonance Raman spectra of ß-carotene powder match well the DFT-simulated Raman spectrum of ß-carotene in the all-trans form. The peak positions and relative intensities of the CC and CC stretching bands of ß-carotene turned out to be similar in the resonance and non-resonance Raman spectra. An increase in the number of conjugated double bonds (n = 3-30) in a polyene structure results in a monotonous shift of the positions of the most intense CC and CC bands towards lower wavenumbers with an increase in the band intensities. An increase in the isomer number results in the monotonous decrease of the CC stretching band intensity for polyenes with 9, 10, 11, 15 and 24 double bonds. An increase in the isomer number inhomogeneously influences the form, position and intensity of the CC stretching band.
Website: https://www.selleckchem.com/
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team