Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
ated that there was no significant publication bias.
The verification phase seems a robust procedure to confirm that the highest possible VO2 has been attained during a ramp or continuous step-incremented CPET. However, given the high concordance between the highest mean VO2 achieved in the CPET and verification phase, findings from the current study would question its necessity in all testing circumstances.
CRD42019123540.
CRD42019123540.Drought is one of the most significant abiotic stresses that affects the growth and productivity of crops worldwide. Finger millet [Eleusine coracana (L.) Gaertn.] is a C4 crop with high nutritional value and drought tolerance. However, the drought stress tolerance genetic mechanism of finger millet is largely unknown. In this study, transcriptomic (RNA-seq) and proteomic (iTRAQ) technologies were combined to investigate the finger millet samples treated with drought at different stages to determine drought response mechanism. A total of 80,602 differentially expressed genes (DEGs) and 3,009 differentially expressed proteins (DEPs) were identified in the transcriptomic and proteomic levels, respectively. An integrated analysis, which combined transcriptome and proteome data, revealed the presence of 1,305 DEPs were matched with the corresponding DEGs (named associated DEGs-DEPs) when comparing the control to samples which were treated with 19 days of drought (N1-N2 comparison group), 1,093 DEGs-DEPs between control and samples which underwent rehydration treatment for 36 hours (N1-N3 comparison group) and 607 DEGs-DEPs between samples which were treated with drought for 19 days and samples which underwent rehydration treatment for 36 hours (N2-N3 comparison group). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified 80 DEGs-DEPs in the N1-N2 comparison group, 49 DEGs-DEPs in the N1-N3 comparison group, and 59 DEGs-DEPs in the N2-N3 comparison group, which were associated with drought stress. The DEGs-DEPs which were drought tolerance-related were enriched in hydrolase activity, glycosyl bond formation, oxidoreductase activity, carbohydrate binding and biosynthesis of unsaturated fatty acids. Co-expression network analysis revealed two candidate DEGs-DEPs which were found to be centrally involved in drought stress response. These results suggested that the coordination of the DEGs-DEPs was essential to the enhanced drought tolerance response in the finger millet.[This corrects the article DOI 10.1371/journal.pone.0236513.].This study assessed the cell carbon content and biomass for genera of dinoflagellates and diatoms in the oceanic ecosystem of the Southern Gulf of Mexico. Carbon content estimates were based on biovolume calculations derived from linear dimension measurements of individual cells and the approximate geometric body shape of each genus. Then, biomass assessments were performed for both groups in two gulf regions (Perdido and Coatzacoalcos) using these carbon content factors and cell abundances. After four seasonal cruises, 11,817 cells of dinoflagellates and 3,412 cells of diatoms were analyzed. Diverse body shapes and cell sizes were observed among 46 dinoflagellate genera and 37 diatom genera. Nano-cells of dinoflagellates (68% 10,000 pg C cell-1) were attributed to Gonyaulacal and some occasional genera of dinoflagellates (e.g., Pyrocystis and Noctiluca) and centric diatoms. In contrast, values up to 3 orders of magnitude lower were found for Peridinial and Gymnodinial dinoflagellates and pennate diatoms. Based on these carbon content estimates, which can be considered representative for most of this oceanic ecosystem, seasonal and regional differences were found in the biomass assessments conducted for these functional groups. Overall, dinoflagellates (mostly low-carbon Gymnodinales) had larger depth-integrated biomass than diatoms (mainly rich-carbon centric forms) within the euphotic zone. An exception to it was the late-summer cruise at the Coatzacoalcos region when a surface bloom of centric diatoms was observed in stations influenced by river runoff. This work contributes useful reference information for future ecological studies and models for understanding the biogeochemical functioning of this open-ocean ecosystem.The MERS-CoV, SARS-CoV, and SARS-CoV-2 are highly pathogenic viruses that can cause severe pneumonic diseases in humans. Unfortunately, there is a non-available effective treatment to combat these viruses. Domain-motif interactions (DMIs) are an essential means by which viruses mimic and hijack the biological processes of host cells. To disentangle how viruses achieve this process can help to develop new rational therapies. Data mining was performed to obtain DMIs stored as regular expressions (regexp) in 3DID and ELM databases. The mined regexp information was mapped on the coronaviruses' proteomes. Most motifs on viral protein that could interact with human proteins are shared across the coronavirus species, indicating that molecular mimicry is a common strategy for coronavirus infection. Enrichment ontology analysis for protein domains showed a shared biological process and molecular function terms related to carbon source utilization and potassium channel regulation. Some of the mapped motifs were nested on B, and T cell epitopes, suggesting that it could be as an alternative way for reverse vaccinology. The information obtained in this study could be used for further theoretic and experimental explorations on coronavirus infection mechanism and development of medicines for treatment.Offering lower-energy food swaps to customers of online supermarkets could help to decrease energy (kcal) purchased and consumed. However, acceptance rates of such food swaps tend to be low. This study aimed to see whether framing lower-energy food swaps in terms of cost savings or social norms could improve likelihood of acceptance relative to framing swaps in terms of health benefits. Participants (n = 900) were asked to shop from a 12-item shopping list in a simulation online supermarket. When a target high-energy food was identified in the shopping basket at check-out, one or two lower-energy foods would be suggested as an alternative (a "swap"). Participants were randomised to only see messages emphasising health benefits (fewer calories), cost benefits (lower price) or social norms (others preferred this product). Data were analysed for 713 participants after exclusions. Selleck Gefitinib Participants were offered a mean of 3.17 swaps (SD = 1.50), and 12.91% of swaps were accepted (health = 14.31%, cost = 11.49%, social norms = 13.
Homepage: https://www.selleckchem.com/products/Gefitinib.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team