NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Effect of stop smoking on wellness benefits in the course of treatment for tuberculosis: secondary investigation TB & Tobacco Tryout.
The combination of high optical nonlinearity in the electromagnetically induced transparency (EIT) effect and strong electric dipole-dipole interaction (DDI) among the Rydberg-state atoms can lead to important applications in quantum information processing and many-body physics. One can utilize the Rydberg-EIT system in the strongly-interacting regime to mediate photon-photon interaction or qubit-qubit operation. One can also employ the Rydberg-EIT system in the weakly-interacting regime to study the Bose-Einstein condensation of Rydberg polaritons. Most of the present theoretical models dealt with the strongly-interacting cases. Here, we consider the weakly-interacting regime and develop a mean field model based on the nearest-neighbor distribution. Using the mean field model, we further derive the analytical formulas for the attenuation coefficient and phase shift of the output probe field. The predictions from the formulas are consistent with the experimental data in the weakly-interacting regime, verifying the validity of our model. Immunology modulator As the DDI-induced phase shift and attenuation can be seen as the consequences of elastic and inelastic collisions among particles, this work provides a very useful tool for conceiving ideas relevant to the EIT system of weakly-interacting Rydberg polaritons and for evaluating experimental feasibility.A transparent TmLu3Al5O12 ceramic is fabricated by solid-state reactive sintering at 1830 °C for 30 h using commercial α-Al2O3 and Lu2O3/Tm2O3 powders and sintering aids - MgO and TEOS. The ceramic belongs to the cubic system and exhibits a close-packed structure (mean grain size 21 µm). The in-line transmission at ∼1 µm is 82.6%, close to the theoretical limit. The spectroscopic properties of the ceramic are studied in detail. The maximum stimulated-emission cross-section is 2.37×10-21 cm2 at 1749nm and the radiative lifetime of the 3F4 state is about 10 ms. The modified Judd-Ofelt theory accounting for configuration interaction is applied to determine the transition probabilities of Tm3+, yielding the intensity parameters Ω2 = 2.507, Ω4 = 1.236, Ω6 = 1.340 [10-20 cm2] and α = 0.196×10-4 cm. The effect of excited configurations on lower-lying interconnected states with the same J quantum number is discussed. First laser operation is achieved under diode-pumping at 792 nm. A 4 at.% TmLu3Al5O12 ceramic laser generated 3.12 W at 2022-2035nm with a slope efficiency of 60.2%. The ceramic is promising for multi-watt lasers at >2 µm.This paper demonstrates designs of transparent electrodes for polarized light based on semiconductor deep-subwavelength monolithic high-contrast gratings integrated with metal (metalMHCG). We provide theoretical background explaining the phenomena of high transmittance in the gratings and investigate their optimal parameters, which enable above 95% transmittance for sheet resistance of 2 ΩSq-1 and over 90% transmittance for extremely small sheet resistance of 0.04 ΩSq-1 in a broad spectral range below the semiconductor band-gap. The analysis is based on our fully vectorial optical model, which has been verified previously via comparison with the experimental characteristics of similar structures. The transparent electrodes can be realized in any high refractive index material used in optoelectronics and designed for light in spectral ranges starting from ultra-violet with no upper limit for the wavelength of the electromagnetic waves. They not only enable lateral transport of electrons but can also be used as an electric contact for injecting current into a semiconductor.Volume holographic phase gratings possessing the saturated refractive index modulation amplitudes as large as 4.5×10-2 were recorded at a wavelength of 532 nm in a photopolymerizable nanoparticle-polymer composite (NPC) film dispersed with ultrahigh refractive index hyperbranched-polymer (HBP) organic nanoparticles. This prominent result was achieved by a combination of the HBP nanoparticles with triazine and aromatic ring units and an electron donor/acceptor photo-initiator system doped in an acrylate monomer blend with low viscosity. As a result, efficient mutual diffusion of HBP nanoparticles and monomer having their very large refractive index difference took place. Obtained results suggest a potentiality of our newly developed HBP-dispersed NPC gratings as efficient volume holographic optical elements for various photonic applications including wearable headsets for augmented and mixed reality.Chalcogenide glasses are attractive materials for optical applications. However, these applications often require pattering of the surface with functional micro-/ nanostructures, which is challenging by traditional microfabrication. Here, we present a novel, robust, and scalable approach for the direct patterning of chalcogenide glasses, based on soft imprinting of a solvent-plasticized glass layer formed on the glass surface. We established a methodology for surfaces plasticizing, through tuning of its glass transition temperature by process conditions, without compromising on the chemical composition, structure, and optical properties of the plasticized layer. This control over the glass transition temperature allowed to imprint the surface of chalcogenide glass with features sized down to 20 nm, and achieve an unprecedented combination of full pattern transfer and complete maintenance of the shape of the imprinted substrate. We demonstrated two applications of our patterning approach a diffraction grating, and a multifunctional pattern with both antireflective and highly hydrophobic water-repellent functionalities - a combination that has never been demonstrated for chalcogenide glasses. This work opens a new route for the nanofabrication of optical devices based on chalcogenide glasses and paves the way to numerous future applications for these important optical materials.We propose and experimentally demonstrate a novel ultracompact silicon polarization rotator based on equivalent asymmetric waveguide cross section in only single-step etching procedure for densely integrated on-chip mode-division multiplexing system. In the conventional mode hybridization scheme, the asymmetric waveguide cross section is employed to excite the hybridized modes to realize high performance polarization rotator with compact footprint and high polarization extinction ratio. However, the fabrication complexity severely restricts the potential application of asymmetric waveguide cross section. We use inverse-designed photonic-crystal-like subwavelength structure to realize an equivalent asymmetric waveguide cross section, which can be fabricated in only single-step etching process. Besides, a theory-assisted inverse design method based on a manually-set initial pattern is employed to optimize the device to improve design efficiency and device perform. The fabricated device exhibited high performance with a compact footprint of only 1.2 × 7.2 µm2, high extinction ratio (> 19 dB) and low insertion loss ( less then 0.7 dB) from 1530 to 1590 nm.The recent years have given rise to a large number of techniques for "looking around corners", i.e., for reconstructing or tracking occluded objects from indirect light reflections off a wall. While the direct view of cameras is routinely calibrated in computer vision applications, the calibration of non-line-of-sight setups has so far relied on manual measurement of the most important dimensions (device positions, wall position and orientation, etc.). In this paper, we propose a method for calibrating time-of-flight-based non-line-of-sight imaging systems that relies on mirrors as known targets. A roughly determined initialization is refined in order to optimize for spatio-temporal consistency. Our system is general enough to be applicable to a variety of sensing scenarios ranging from single sources/detectors via scanning arrangements to large-scale arrays. It is robust towards bad initialization and the achieved accuracy is proportional to the depth resolution of the camera system.The overdetermination of the mathematical problem underlying ptychography is reduced by a host of experimentally more desirable settings. Furthermore, reconstruction of the sample-induced phase shift is typically limited by uncertainty in the experimental parameters and finite sample thicknesses. Presented is a conjugate gradient descent algorithm, regularized optimization for ptychography (ROP), that recovers the partially known experimental parameters along with the phase shift, improves resolution by incorporating the multislice formalism to treat finite sample thicknesses, and includes regularization in the optimization process, thus achieving reliable results from noisy data with severely reduced and underdetermined information.Two-photon time-frequency entanglement is a valuable resource in quantum information. Resolving the wavepacket of ultrashort pulsed single-photons, however, is a challenge. Here, we demonstrate remote spectral shaping of single photon states and probe the coherence properties of two-photon quantum correlations in the time-frequency domain, using engineered parametric down-conversion (PDC) and a quantum pulse gate (QPG) in nonlinear waveguides. Through tailoring the joint spectral amplitude function of our PDC source we control the temporal mode structure between the generated photon pairs and show remote state-projections over a range of time-frequency mode superpositions.Step-index fibers (SIFs) with alumina cores were fabricated employing the powder-in-tube technique. The fabricated SIFs have alumina concentrations of up to 32 mol%, which is the highest value reported so far for fibers with core diameters smaller than 25 μm. The mixing mechanisms between alumina and silica during fiber drawing were revealed by energy dispersive X-ray analysis of the neck-down area of the preform. The results of the measurements and simulations indicate that besides diffusion, fluid dynamics between softened silica and alumina powder also play an important role in the resulting alumina and silica concentrations in the fiber. The influence of different drawing parameters on the alumina and silica concentrations of the fibers is also presented.Among the various methods for computing the T-matrix in electromagnetic and acoustic scattering problems is an iterative approach that has been shown to be particularly suited for particles with small-scale surface roughness. This method is based on an implicit T-matrix equation. However, the convergence properties of this method are not well understood. Here, a sufficient condition for the convergence of the iterative T-matrix algorithm is derived by applying the Banach fixed point theorem. The usefulness of the criterion is illustrated by applying it to predicting, as well as to systematically improving the convergence of the iterative method.This paper focuses on polarized radiative transfer in dispersed layers composed of densely packed optically soft particles while considering the effects of dependent scattering and particle agglomeration. The radiative properties of the particles for different agglomeration degrees are calculated using the Lorenz-Mie theory combined with the Percus-Yevick sticky hard sphere model, and the vector radiative transfer equation is solved by using the spectral method. The normalized Stokes reflection matrix elements of the layers for different particle sizes, particle volume fractions and layer thicknesses are discussed. The results show that the effects of multiple scattering, dependent scattering and particle agglomeration have different degrees of influence on the polarized reflection characteristics of the layers. Due to the inhibition effect of far-field interference interaction on particle scattering, the dependent scattering weakens the depolarization caused by multiple scattering. However, as the particles form agglomerations, the scattering coefficients of the particles obviously increase with the agglomeration degree, which will lead to the significant enhancement of the multiple scattering and depolarization.
Read More: https://www.selleckchem.com/products/Dexamethasone.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.