NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Physical as well as Illness Styles of Respiratory System Determined by Organ-on-a-Chip Technological innovation.
For optimal hyperparameter tuning of the ResNet model, the GWO algorithm is employed. The experimental results indicated that the GWORN-EAL technique has accomplished effectual outcomes in several aspects. A brief experimental study highlighted the improvement of the GWORN-EAL technique compared to existing models.According to the world population, nearly five billion people use mobile phones in their daily lives, and this has increased by 20% in the last twelve months compared to the previous report. An average survey conducted by researchers to find the amount of data consumed in a month by every mobile phone in the world has finally resulted in 45 exabytes of data being collected from a single user within a month. In today's world, data consumption and data analytics are being considered as one of the most important necessities for e-commerce companies. With the help of such collected data from a person, it is possible to predict the future signature or activity of the person. If 45 terabytes of data can be stored for a single user, determining the average calculation and amount of data to be collected for five billion users appears to be much more difficult. More than the human working concept, it looks like it would be difficult for a traditional computer system to handle this amount of data. To study and understacuracy of 98%, which is 5% higher than the existing algorithm.Computer vision-based motion target detection and tracking, which is widely used in video surveillance, human-computer interaction, range interpretation, and other fields, is one of the current research hotspots in the field of computer vision. In engineering scenarios, the two are inseparable and need to work together to accomplish specific tasks. The related research is progressing rapidly, but there is still room for improving its timeliness, accuracy, and automation. In this paper, we summarize and classify some classical target detection methods, analyze the basic principles of convolutional neural networks, and analyze the classical detection algorithms based on region suggestion and deep regression networks. After that, we improve the SSD algorithm for the shortage of low-level feature convolution layers, which has insufficient feature extraction and leads to poor detection of small targets. For the motion target tracking problem, this paper studies the motion target tracking method based on support vesetting parameters, such as confidence level; the effectiveness and continuity of detection and tracking are judged by setting the interframe centroid distance.Aiming at the problem that computing power and resources of Mobile Edge Computing (MEC) servers are difficult to process long-period intensive task data, this study proposes a 5G converged network resource allocation strategy based on reinforcement learning in edge cloud computing environment. n order to solve the problem of insufficient local computing power, the proposed strategy offloads some tasks to the edge of network. Firstly, we build a multi-MEC server and multi-user mobile edge system, and design optimization objectives to minimize the average response time of system tasks and total energy consumption. Then, task offloading and resource allocation process is modeled as Markov decision process. Furthermore, the deep Q-network is used to find the optimal resource allocation scheme. Finally, the proposed strategy is analyzed experimentally based on TensorFlow learning framework. Experimental results show that when the number of users is 110, final energy consumption is about 2500 J, which effectively reduces task delay and improves the utilization of resources.Character relationships in literary works can be interpreted and analyzed from the perspective of social networks. Analysis of intricate character relationships helps to better understand the internal logic of plot development and explore the significance of a literary work. This paper attempts to extract social networks from Chinese literary works based on co-word analysis. In order to analyze character relationships, both social network analysis and cluster analysis are carried out. Network analysis is performed by calculating degree distribution, clustering coefficient, shortest path length, centrality, etc. Cluster analysis is used for partitioning characters into groups. In addition, an improved visualization method of hierarchical clustering is proposed, which can clearly exhibit character relationships within clusters and the hierarchical structure of clusters. Finally, experimental results demonstrate that the proposed method succeeds in establishing a comprehensive framework for extracting networks and analyzing character relationships in Chinese literary works.Aiming at the problems of small key space, low security, and low algorithm complexity in a low-dimensional chaotic system encryption algorithm, an image encryption algorithm based on the ML neuron model and DNA dynamic coding is proposed. The algorithm first performs block processing on the R, G, and B components of the plaintext image to obtain three matrices, and then constructs a random matrix with the same size as the image components through logistic mapping and performs DNA encoding, DNA operation, and DNA decoding on the two parts. Second, it performs determinant permutation on the matrix by two different chaotic sequences obtained by logistic mapping iteration. Finally, it merges the block and image components to complete the image encryption and obtain the ciphertext image. Wherein, DNA encoding, DNA operation, and DNA decoding methods are all randomly and dynamically determined by the chaotic sequence generated by the ML neuron chaotic system. According to simulation results and performance analysis, the algorithm has a larger key space, can effectively resist various statistical and differential attacks, and has better security and higher complexity.The construction industry is characterized by a high level of mobility and a diverse range of practitioners from different social status, which can affect the industry's group management processes. The exploration of the mechanisms involved is an important task for theoretical research and a challenge for management practices. This study examines three relevant aspects of work-group behavior in the construction industry from a social exchange perspective the individual's evaluation of the level of the emotional investment of members in the work team and their assessment of personal rewards and costs. The study of 71 construction industry workers through the development of a cost-benefit inventory questionnaire of individual-team exchange relationships revealed that their level of emotional investment in the work group can be predicted by assessing their awareness of personal rewards and costs. A further clustering algorithm revealed that an individual's social status had a significant impact on their level of affective investment, but there was no significant correlation between an individual's wage and their level of emotional investment in the work team. The findings deepen our understanding of group behaviors in the construction field by explaining the interactions between individuals and organizations in work groups while emphasizing the indispensable role of emotional factors in group development.The Internet is rich in information related to the financial field. The financial entity information text containing new internet vocabulary has a certain impact on the results of existing recognition algorithms. CDDO-Im manufacturer How to solve the problems of new vocabulary and polysemy is a problem to be solved in the current field. This paper proposes an ERNIE-Doc-BiLSTM-CRF named entity recognition model based on the pretrained language model. Compared with the traditional model, the ERNIE-Doc pretrained language model constructs a unique word vector from the word vector and combines the location coding, which solves polysemy problem well. The intensive skimming mechanism realizes the long text processing well and captures the context information effectively. The experimental results show that the accuracy of this model is 86.72%, the recall rate is 83.39%, and the F1 value is 85.02%, which is 13.36% higher than other models; the recall rate is increased by 13.05%, and the F1 value is increased by 13.21%.With the rapid development of information technology, the amount of data in various digital archives has exploded. How to reasonably mine and analyze archive data and improve the effect of intelligent management of newly included archives has become an urgent problem to be solved. The existing archival data classification method is manual classification oriented to management needs. This manual classification method is inefficient and ignores the inherent content information of the archives. In addition, for the discovery and utilization of archive information, it is necessary to further explore and analyze the correlation between the contents of the archive data. Facing the needs of intelligent archive management, from the perspective of the text content of archive data, further analysis of manually classified archives is carried out. Therefore, this paper proposes an intelligent classification method for archive data based on multigranular semantics. First, it constructs a semantic-label multigranular attention model; that is, the output of the stacked expanded convolutional coding module and the label graph attention module are jointly connected to the multigranular attention Mechanism network, the weighted label output by the multigranularity attention mechanism network is used as the input of the fully connected layer, and the output value of the fully connected layer used to map the predicted label is input into a Sigmoid layer to obtain the predicted probability of each label; then, the model for training use the multilabel data set to train the constructed semantic-label multigranularity attention model, adjust the parameters until the semantic-label multigranularity attention model converges, and obtain the trained semantic-label multigranularity attention model. Taking the multilabel data set to be classified as input, the semantic-label multigranularity attention model after training outputs the classification result.Recently, bioinformatics and computational biology-enabled applications such as gene expression analysis, cellular restoration, medical image processing, protein structure examination, and medical data classification utilize fuzzy systems in offering effective solutions and decisions. The latest developments of fuzzy systems with artificial intelligence techniques enable to design the effective microarray gene expression classification models. In this aspect, this study introduces a novel feature subset selection with optimal adaptive neuro-fuzzy inference system (FSS-OANFIS) for gene expression classification. The major aim of the FSS-OANFIS model is to detect and classify the gene expression data. To accomplish this, the FSS-OANFIS model designs an improved grey wolf optimizer-based feature selection (IGWO-FS) model to derive an optimal subset of features. Besides, the OANFIS model is employed for gene classification and the parameter tuning of the ANFIS model is adjusted by the use of coyote optimization algorithm (COA).
Here's my website: https://www.selleckchem.com/products/cddo-im.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.