Notes
Notes - notes.io |
With the prevailing application of new materials and the higher requirements for the quality and efficiency of production in the equipment manufacturing industry, traditional assembly methods can hardly meet the needs of large-scale production, especially in the field of high-precision assembly. Robot assembly guided by visual perception has become the key of the research in the field of engineering technology. It requires higher accuracy of robot visual perception and the control over force, position and so on. However, in 3C assembly, most products are made of transparent materials such as glass. selleck inhibitor Because of the transparency and specular reflection of the surface, 3D reconstruction of transparent objects is a very difficult problem in computer vision, in that the traditional visual perception methods could not be accurate enough. The present research proposes a bionic active sensing algorithm for 3D perception and reconstruction and realizes high-precision 3D by applying the registration algorithm. The purpose is to solve the problems existing in the traditional visual perception method, such as difficulties in achieving active sensing, low accuracy of point clouds registration, and complex computation. The results of the experiments show that the present method is efficient and accurate in 3D reconstruction. It reduces the planar reconstruction error to 0.064 mm and the surface reconstruction error to 0.177 mm.Terahertz time-domain spectroscopy (THz-TDS) employs a mechanical stage to introduce the time delay between pump and probe optical pulses during the sampling process of the time-domain electric field of a terahertz pulse. The positioning error and limited resolution of a mechanical delay stage cause an inaccurate sampling of a terahertz pulse. In this study, we numerically and experimentally investigated the influence of delay stage positioning error on the major characteristics of THz-TDS, such as bandwidth and dynamic range of the system, along with the signal-to-noise ratio (SNR) of the intensity spectra. We demonstrate that the positioning error in the delay stage not only reduces bandwidth and dynamic range of the measurement system but also decreases the SNR of the intensity spectra.Freeform optics offers more degrees of freedom to optical design that can benefit from a compact package size and a large field of view for imaging systems. Motivated by the advances in modern optical fabrication and metrology, freeform optics has been found in many applications. In this paper, we will describe the challenging optical design, fabrication, metrology, and assembly of an all-aluminum unobscured two-mirror freeform imaging telescope. The telescope has a large field of view of 20∘×15∘. The freeform aluminum mirrors are manufactured by diamond turning based on a feedback modification strategy. The freeform mirrors are measured by a computer-generated hologram-based interferometric null test method. All-aluminum configuration has the advantages of being athermal and cost-effective.Existing photonic couplers are limited by either large footprint or long interaction length. Here a highly efficient and ultracompact three-port trench-based coupler (TBC) is proposed on an InP platform in terms of the frustrated total internal reflection principle. A single slash-shaped narrow trench located at the "T" intersection of two InP/InGaAsP multiquantum well ridge waveguides forms the coupler. The finite-difference time-domain numerical method is utilized to optimize the parameterization of the couplers, such as splitting ratios and efficiency versus trench widths, lengths, locations, and angles. A single-mode 2 µm wide ridge waveguide coupler having a high aspect ratio trench filled with Al2O3 was fabricated and characterized at 1.55 µm wavelength. The "trench-first" fabrication process is optimized to reduce its inherent insertion loss (IL), showing the IL within a range of 0.3-0.5 dB. The devices can outperform the state-of-the-art trench couplers by ≥∼24 times the figure of merit. These TBCs are thus promising candidates for applications in the next generation of photonic integrated circuits.In this paper, a compact optical high-speed 1-bit comparator is proposed based on photonic crystals. In this structure, the nonlinear rods are used at the cross-connecting point of two optical waveguides. The optical transmission and reflection from these rods depend on the amount of the optical intensity. In response to the different states of the input ports, different values of the optical power reach these rods and the interference patterns make the correct function of the output ports. The refractive index and the Kerr coefficient of nonlinear rods are 1.4m2/W and 10-14m2/W, respectively. The footprint of the structure is 55µm2, which is much smaller than the previous works. Besides, the lower delay time is the other advantage of this work compared with the previous works. Based on the simulation results, the proposed structure can be used in integrated optical circuits.The silicon photomultiplier (SiPM) for low light detection has many advantages when compared to existing photon counting detectors, such as high sensitivity, low cost, robustness, and compact hardware. To facilitate the use of SiPM as a portable, field deployable device, an electrical circuit was designed consisting of an amplifier, comparator, and microcontroller. In addition, a 3D printing was used to create a portable cradle for housing the SiPM. To evaluate its detection ability, a laser experiment and bioluminescent experiments, including Pseudomonas fluorescens M3A detection, E. coli O157H7 PhiV10nluc lysogen detection, and a luminescence-based detection of E. coli O157H7 in ground meat using the engineered luminescent-based reporter phage PhiV10nluc, were conducted. In the same experimental setting, our previously developed smartphone-based luminometer called the bioluminescent-based analyte quantitation by smartphone and a conventional photomultiplier tube-based benchtop luminometer were used to compare detection levels and applicability for supporting luminescent phage-based pathogen detection. Results showed that the SiPM provides better performance in terms of time to detection and SNR and could be used as the light detection component of the PhiV10nluc phage-based detection format.
Read More: https://www.selleckchem.com/products/iberdomide.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team