Notes
![]() ![]() Notes - notes.io |
Drought is the main environmental factor that limits the yield and quality of apples (Malus × domestica) grown in arid and semi-arid regions. Nuclear factor Ys (NF-Ys) are important transcription factors involved in the regulation of plant growth, development, and various stress responses. However, the function of NF-Y genes is poorly understood in apples. Here, we identified 43 NF-Y genes in the genome of apples and conducted an initial functional characterization of the apple NF-Y. Expression analysis of NF-Y members in M. sieversii revealed that a large number of NF-Ys were highly expressed in the roots compared with the leaves, and a large proportion of NF-Y genes responded to drought treatment. Furthermore, heterologous expression of MsNF-YB21, which was significantly upregulated by drought, led to a longer root length and, thus, conferred improved osmotic and salt tolerance in Arabidopsis. Moreover, the physiological analysis of MsNF-YB21 overexpression revealed enhanced antioxidant systems, including antioxidant enzymes and compatible solutes. In addition, genes encoding catalase (AtCAT2, AtCAT3), superoxide dismutase (AtFSD1, AtFSD3, AtCSD1), and peroxidase (AtPER12, AtPER42, AtPER47, AtPER51) showed upregulated expression in the MsNF-YB21 overexpression lines. These results for the MsNF-Y gene family provide useful information for future studies on NF-Ys in apples, and the functional analysis of MsNF-YB21 supports it as a potential target in the improvement of apple drought tolerance via biotechnological strategies.The development and testing of new antimicrobial peptides (AMPs) represent an important milestone toward the development of new antimicrobial drugs that can inhibit the growth of pathogens and multidrug-resistant microorganisms such as Pseudomonas aeruginosa, Gram-negative bacteria. Most AMPs achieve these goals through mechanisms that disrupt the normal permeability of the cell membrane, which ultimately leads to the death of the pathogenic cell. Here, we developed a unique combination of a membrane penetrating peptide and peptides prone to amyloidogenesis to create hybrid peptide "cell penetrating peptide + linker + amyloidogenic peptide". We evaluated the antimicrobial effects of two peptides that were developed from sequences with different propensities for amyloid formation. Among the two hybrid peptides, one was found with antibacterial activity comparable to antibiotic gentamicin sulfate. Our peptides showed no toxicity to eukaryotic cells. In addition, we evaluated the effect on the antimicrobial properties of amino acid substitutions in the non-amyloidogenic region of peptides. We compared the results with data on the predicted secondary structure, hydrophobicity, and antimicrobial properties of the original and modified peptides. In conclusion, our study demonstrates the promise of hybrid peptides based on amyloidogenic regions of the ribosomal S1 protein for the development of new antimicrobial drugs against P. aeruginosa.The peroxisome proliferator-activated receptor (PPAR) family of transcription factors has been demonstrated to play critical roles in regulating fuel selection, energy expenditure and inflammation in skeletal muscle and other tissues. Activation of PPARs, through endogenous fatty acids and fatty acid metabolites or synthetic compounds, has been demonstrated to have lipid-lowering and anti-diabetic actions. This review will aim to provide a comprehensive overview of the functions of PPARs in energy homeostasis, with a focus on the impacts of PPAR agonism on muscle metabolism and function. The dysregulation of energy homeostasis in skeletal muscle is a frequent underlying characteristic of inflammation-related conditions such as sepsis. However, the potential benefits of PPAR agonism on skeletal muscle protein and fuel metabolism under these conditions remains under-investigated and is an area of research opportunity. Thus, the effects of PPARγ agonism on muscle inflammation and protein and carbohydrate metabolism will be highlighted, particularly with its potential relevance in sepsis-related metabolic dysfunction. The impact of PPARδ agonism on muscle mitochondrial function, substrate metabolism and contractile function will also be described.By employing an innovative biohybrid membrane, the present study aimed at elucidating the mechanistic role of the focal adhesion kinase (FAK) in epithelial morphogenesis in vitro over 4, 7, and 10 days. The consequences of siRNA-mediated FAK knockdown on epithelial morphogenesis were monitored by quantifying cell layers and detecting the expression of biomarkers of epithelial differentiation and homeostasis. Histologic examination of FAK-depleted samples showed a significant increase in cell layers resembling epithelial hyperplasia. Semiquantitative fluorescence imaging (SQFI) revealed tissue homeostatic disturbances by significantly increased involucrin expression over time, persistence of yes-associated protein (YAP) and an increase of keratin (K) 1 at day 4. The dysbalanced involucrin pattern was underscored by ROCK-IISer1366 activity at day 7 and 10. SQFI data were confirmed by quantitative PCR and Western blot analysis, thereby corroborating the FAK shutdown-related expression changes. The artificial FAK shutdown was also associated with a significantly higher expression of filaggrin at day 10, sustained keratinocyte proliferation, and the dysregulated expression of K19 and vimentin. These siRNA-induced consequences indicate the mechanistic role of FAK in epithelial morphogenesis by simultaneously considering prospective biomaterial-based epithelial regenerative approaches.Menaquinones (MK) are hydrophobic molecules that consist of a naphthoquinone headgroup and a repeating isoprenyl side chain and are cofactors used in bacterial electron transport systems to generate cellular energy. We have previously demonstrated that the folded conformation of truncated MK homologues, MK-1 and MK-2, in both solution and reverse micelle microemulsions depended on environment. There is little information on how MKs associate with phospholipids in a model membrane system and how MKs affect phospholipid organization. In this manuscript, we used a combination of Langmuir monolayer studies and molecular dynamics (MD) simulations to probe these questions on truncated MK homologues, MK-1 through MK-4 within a model membrane. We observed that truncated MKs reside farther away from the interfacial water than ubiquinones are are located closer to the phospholipid tails. We also observed that phospholipid packing does not change at physiological pressure in the presence of truncated MKs, though a difference in phospholipid packing has been observed in the presence of ubiquinones. We found through MD simulations that for truncated MKs, the folded conformation varied, but MKs location and association with the bilayer remained unchanged at physiological conditions regardless of side chain length. selleck chemicals Combined, this manuscript provides fundamental information, both experimental and computational, on the location, association, and conformation of truncated MK homologues in model membrane environments relevant to bacterial energy production.Beta thalassemia major (βT) is a hereditary anemia characterized by transfusion-dependency, lifelong requirement of chelation, and organ dysfunction. MicroRNA (miRNA) can be packed into extracellular vesicles (EVs) that carry them to target cells. We explored EV-miRNA in βT and their pathophysiologic role. Circulating EVs were isolated from 35 βT-patients and 15 controls. EV miRNA was evaluated by nano-string technology and real-time quantitative polymerase chain reaction (RT-qPCR). We explored effects of EVs on cell culture proliferation, apoptosis, and signal transduction. Higher amounts of small EV (exosomes) were found in patients than in controls. The expression of 21 miRNA was > two-fold higher, and of 17 miRNA less then three-fold lower in βT-EVs than control-EVs. RT-qPCR confirmed differential expression of six miRNAs in βT, particularly miR-144-3p, a regulator of erythropoiesis. Exposure of endothelial, liver Huh7, and pancreatic 1.1B4 cells to βT-EVs significantly reduced cell viability and increased cell apoptosis. βT-EV-induced endothelial cell apoptosis involved the MAPK/JNK signal-transduction pathway. In contrast, splenectomized βT-EVs induced proliferation of bone marrow mesenchymal stem cells (BM-MSC). In summary, the miR-144-3p was strongly increased; βT-EVs induced apoptosis and decreased endothelial, pancreatic, and liver cell survival while supporting BM-MSC proliferation. These mechanisms may contribute to βT organ dysfunction and complications.Most glycosyltransferases show remarkable gross and fine substrate specificity, which is reflected in the old one enzyme-one linkage paradigm. While human Gb3/CD77 synthase is a glycosyltransferase that synthesizes the Galα1→4Gal moiety mainly on glycosphingolipids, its pigeon homolog prefers glycoproteins as acceptors. In this study, we characterized two Gb3/CD77 synthase paralogs found in pigeons (Columba livia). We evaluated their specificities in transfected human teratocarcinoma 2102Ep cells by flow cytofluorometry, Western blotting, high-performance thin-layer chromatography, mass spectrometry and metabolic labelling with 14C-galactose. We found that the previously described pigeon Gb3/CD77 synthase (called P) can use predominately glycoproteins as acceptors, while its paralog (called M), which we serendipitously discovered while conducting this study, efficiently synthesizes Galα1→4Gal caps on both glycoproteins and glycosphingolipids. These two paralogs may underlie the difference in expression profiles of Galα1→4Gal-terminated glycoconjugates between neoavians and mammals.Background Over the past few years, a better understanding of the biology of G-protein coupled receptors (GPRs) has led to the identification of several receptors as novel targets for free fatty acids (FFAs). FFAR4 has received special attention in the context of chronic inflammatory diseases, including atherosclerosis, obesity and NAFLD, through to its anti-inflammatory effect. Methods The present study investigates the influence of prolonged treatment with TUG-891-FFAR4 agonist on the development of atherosclerosis plaque in apoE-knockout mice, using morphometric and molecular methods. Results TUG-891 administration has led to the reduction of atherosclerotic plaque size and necrotic cores in an apoE-knockout mice model. TUG-891-treated mice were administered subcutaneously at a dose of 20 mg/kg three times a week for 4 months. The FFAR4 agonist reduced the content of pro-inflammatory M1-like macrophages content in atherosclerotic plaques, as evidenced by immunohistochemical phenotyping and molecular methods. In atherosclerotic plaque, the population of smooth muscle cells increased as evidenced by α-SMA staining. We observed changes in G-CSF and eotaxin markers in the plasma of mice; changes in the levels of these markers in the blood may be related to macrophage differentiation. Importantly, we observed a significant increase in M2-like macrophage cells in atherosclerotic plaque and peritoneum. Conclusions Prolonged administration of TUG-891 resulted in significant amelioration of atherogenesis, providing evidence that the strategy based on macrophage phenotype switching toward an M2-like activation state via stimulation of FFAR4 receptor holds promise for a new approach in the prevention or treatment of atherosclerosis.
My Website: https://www.selleckchem.com/products/Nimodipine(Nimotop).html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team