Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Avalanche photodiodes (APDs) are the preferred photodetectors for direct-detection, high data-rate long-haul optical telecommunications. APDs can detect low-level optical signals due to their internal amplification of the photon-generated electrical current, which is attributable to the avalanche of electron and hole impact ionizations. Despite recent advances in APDs aimed at reducing the average avalanche-buildup time, which causes intersymbol interference and compromises receiver sensitivity at high data rates, operable speeds of commercially available APDs have been limited to 10Gbps. We report the first demonstration of a dynamically biased APD that breaks the traditional sensitivity-versus-speed limit by employing a data-synchronous sinusoidal reverse-bias that drastically suppresses the average avalanche-buildup time. Compared with traditional DC biasing, the sensitivity of germanium APDs at 3Gbps is improved by 4.3 dB, which is equivalent to a 3,500-fold reduction in the bit-error rate. The method is APD-type agnostic and it promises to enable operation at rates of 25Gbps and beyond.We present a simple radio-over-fiber (RoF) link architecture for millimeter-wave orthogonal frequency division multiplexing (OFDM) transmission using only one Mach-Zehnder modulator (MZM) and precoding technique. In the transmission system, the amplitudes and the phase of the driving radio-frequency (RF) OFDM signal on each sub-carrier are precoded, to ensure that the OFDM signal after photodetector (PD) can be restored to original OFDM signal. The experimental results show that the bit-error ratios (BERs) of the transmission system are less than the forward-error-correction (FEC) threshold of 3.8 × 10(-3), which demonstrates that the generation of OFDM vector signal based on our proposed scheme can be employed in our system architecture.We demonstrate the use of a photonic crystal fiber (PCF) as a compact three-color fs laser system operating at 76 MHz, limited only by the repetition rate of the pump laser. The system is suitable for background-free time-resolved four-wave mixing measurements, which arguably reach fundamental limits in signal detectivity. We give a detailed characterization of the near transform-limited multi-color pulses that are extracted from the PCF, and prove the system through time-resolved coherent anti-Stokes Raman scattering measurements in bipyridyl ethylene and styrene.Recently, low-frequency driving of liquid crystal display (LCD) panels to minimize power consumption has drawn much attention. In the case in which an LCD panel is driven by a fringe-field at a low frequency, the image flickering phenomenon occurs when the sign of the applied electric field is reversed. We investigated image flickering induced by the flexoelectric effect in a fringe-field switching (FFS) liquid crystal cell in terms of the transmittance difference between frames and the ripple phenomenon. Experimental results show that image flicker due to transmittance difference can be eliminated completely and that the ripple phenomena can be reduced significantly by applying a bipolar voltage wave to the FFS cell.By using a twin-core fiber (TCF), we propose and demonstrate a novel distributed SPR sensor, which employs both the time division multiplexing (TDM) technology and the wavelength division multiplexing (WDM) technology together. The proposed sensor has two sensing passages with four sensing channels (and there are two sensing channels in each sensing passage). We employ the TDM technology to realize the two passage distributed sensing, which are parallel-connection; and we employ the WDM technology to realize the distributed sensing of two channels in a sensing passage, which are series-connected. In order to realize the TDM technology, we employ a two-core fiber, which has two cores in a same cladding, being equal to dividing the traditional single core into two independent sensing zones; in order to realize the WDM technology, we employ a fiber end polishing-connecting method to adjust the resonance angle/wavelength to realize the dynamic range separation. This twin-passage four-channel twin-core fiber SPR sensor is suitable for applying in fields of the multi-channel liquid refractive index and temperature self-reference measurement.This paper presents a new and effective technique to calibrate a camera without nonlinear iteration optimization. To this end, the centre-of-distortion is accurately estimated firstly. https://www.selleckchem.com/products/crenolanib-cp-868596.html Based on the radial distortion division model, point correspondences between model plane and its image were used to compute the homography and distortion coefficients afterwards. Once the homographies of calibration images are obtained, the camera intrinsic parameters are solved analytically. All the solution techniques applied in this calibration process are non-iterative that do not need any initial guess, with no risk of local minima. Moreover, estimation of the distortion coefficients and intrinsic parameters could be successfully decoupled, yielding the more stable and reliable result. Both simulative and real experiments have been carried out to show that the proposed method is reliable and effective. Without nonlinear iteration optimization, the proposed method is computationally efficient and can be applied to real-time online calibration.A random laser on the optical fiber facet is constructed by dipping an optical fiber end face into the solution of polydimethylsiloxane doped with rhodamine 6G organic dye and silver nanowires. The PDMS film doped with rhodamine 6G acts as the active waveguide layer, and the silver nanowires provide a three-dimensional plasmonic feedback. The plasmon resonance of silver nanowires significantly improves the pump efficiency of the random laser. The most output energy of random laser concentrates in a small angle range along the axis of the optical fiber. This fabrication technique provides a simple and efficient way for the fabrication of random lasers on the optical fiber facet with low cost.Imaging domain structure of antiferromagnetic DyFeO(3) reveals that intense laser excitation can control the temperature of the Morin transition from collinear to non-collinear spin state. Excitation of the antiferromagnet with femtosecond laser pulses with the central wavelength of 800 nm leads to a shift of the transition temperature over 1 K to higher values as if the light effectively cools the irradiated area down. It is suggested that the optical control of the Morin point can be a result of photo-ionization of Dy(3+) ions.A novel concept for an optical parametric oscillator based on four-wave mixing (FOPO) in an optical fiber is presented. This setup has the ability of generating highly chirped signal and idler pulses with compressed pulse durations below 600 fs and pulse energies of up to 250 nJ. At a fixed pump wavelength of 1040 nm, the emerging signal and idler wavelengths can be easily tuned between 867 to 918 nm and 1200 to 1300 nm, respectively, only by altering the cavity length. With compressed peak powers >100 kW and a repetition rate of only 785 kHz, this source provides tunable intense ultra-short pulses at moderate average powers. This setup constitutes a stable, simple and in many ways superior alternative to bulk state-of-the-art OPO light converters for demanding biomedical applications and non-linear microspectroscopy.We present a high repetition rate mid-infrared optical parametric master oscillator power amplifier (MOPA) scheme, which is tunable from 1370 to 4120nm. Up to 4.3W average output power are generated at 1370nm, corresponding to a photon conversion efficiency of 78%. Bandwidths of 6 to 12nm with pulse durations between 250 and 400fs have been measured. Strong conversion saturation over the whole signal range is observed, resulting in excellent power stability. The system consists of a fiber-feedback optical parametric oscillator that seeds an optical parametric power amplifier. Both systems are pumped by the same YbKGW femtosecond oscillator.A widely tunable phase sensitive parametric fiber amplifier employing a three fiber stages configuration and operating in the 2 μm wavelength region is demonstrated. Phase sensitive gain levels of 30 dB and a gain variation of 20 dB were measured for a pulsed pump by determining the conversion efficiency near 2 μm when a signal at 1.281 μm was applied. The amplifier operates in the wavelength range of 1952 nm to 2098 nm, with its bandwidth being around 0.1 nm. The bandwidth can be controlled by the fiber lengths and their dispersion properties.The recently-developed optimized binary compressive detection (OB-CD) strategy has been shown to be capable of using Raman spectral signatures to rapidly classify and quantify liquid samples and to image solid samples. Here we demonstrate that OB-CD can also be used to quantitatively separate Raman and fluorescence features, and thus facilitate Raman-based chemical analyses in the presence of fluorescence background. More specifically, we describe a general strategy for fitting and suppressing fluorescence background using OB-CD filters trained on third-degree Bernstein polynomials. We present results that demonstrate the utility of this strategy by comparing classification and quantitation results obtained from liquids and powdered mixtures, both with and without fluorescence. Our results demonstrate high-speed Raman-based quantitation in the presence of moderate fluorescence. Moreover, we show that this OB-CD based method is effective in suppressing fluorescence of variable shape, as well as fluorescence that changes during the measurement process, as a result of photobleaching.We present a method for obtaining accurate numerical design sensitivities for metal-optical nanostructures. Adjoint design sensitivity analysis, long used in fluid mechanics and mechanical engineering for both optimization and structural analysis, is beginning to be used for nano-optics design, but it fails for sharp-cornered metal structures because the numerical error in electromagnetic simulations of metal structures is highest at sharp corners. These locations feature strong field enhancement and contribute strongly to design sensitivities. By using high-accuracy FEM calculations and rounding sharp features to a finite radius of curvature we obtain highly-accurate design sensitivities for 3D metal devices. To provide a bridge to the existing literature on adjoint methods in other fields, we derive the sensitivity equations for Maxwell's equations in the PDE framework widely used in fluid mechanics.Super-resolution localization microscopy involves acquiring thousands of image frames of sparse collections of single molecules in the sample. The long acquisition time makes the imaging setup prone to drift, affecting accuracy and precision. Localization accuracy is generally improved by a posteriori drift correction. However, localization precision lost due to sample drifting out of focus cannot be recovered as the signal is originally detected at a lower peak signal. Here, we demonstrate a method of stabilizing a super-resolution localization microscope in three dimensions for extended periods of time with nanometer precision. Hence, no localization correction after the experiment is required to obtain super-resolved reconstructions. The method incorporates a closed-loop with a feedback signal generated from camera images and actuation on a 3D nanopositioning stage holding the sample.
Homepage: https://www.selleckchem.com/products/crenolanib-cp-868596.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team