Notes
Notes - notes.io |
Many studies have established the functional properties of Lacticaseibacillus rhamnosus GG, previously known as Lactobacillus rhamnosus GG, marketed worldwide as a probiotic. The extraordinary capacity of L. rhamnosus GG to bind to human mucus and influence the immune system especially stand out. Earlier, we have shown the key role of its SpaCBA sortase-dependent pili encoded by the spaCBA-srtC1 gene cluster herein. These heterotrimeric pili consist of a shaft pilin SpaA, a basal pilin SpaB, and tip pilin SpaC that contains a mucus-binding domain. Here, we set out to characterize a food-grade non-GMO mutant of L. rhamnosus GG, strain PA11, which secretes its pilins, rather than coupling them to the cell surface, due to a defect in the housekeeping sortase A. The sortase-negative strain PA11 was extensively characterized using functional genomics and biochemical approaches and found to secrete the SpaCBA pili into the supernatant. Given the functional importance and uniqueness of the mucus-binding pili of L. rhamnosus GG, strain PA11 offers novel opportunities towards the characterization and further therapeutic application of SpaCBA pili and their low-cost, large-scale production. KEY POINTS •Creation of pilus-secreting mutant (PA11) of the key probiotic LGG. •Strain PA11 is defective in a functional housekeeping sortase SrtA. •Strain PA11 opens novel biotherapeutic application avenues. Graphical abstract.Mixed viral infections are common in fields and frequently exacerbate disease severity via synergistic interactions among individual viral genomic components leading to major crop loss. Two predominant species of tomato-infecting begomoviruses, Tomato leaf curl New Delhi virus (ToLCNDV) and Tomato leaf curl Gujarat virus (ToLCGuV), are known to cause severe leaf curl disease of tomato in India. Previously, we have demonstrated asymmetric synergism between these two distinct begomovirus species during mixed infection in solanaceous hosts. In the present study, we have identified the underlying proteins that positively regulate asymmetric synergism and their effect on plant defense machinery. During co-infection, the AC2 and AV2 of ToLCGuV enhanced ToLCNDV DNA accumulation in Nicotiana benthamiana as well as in their natural host, tomato. Furthermore, we found that AC2 and AV2 of ToLCNDV and AV2 of ToLCGuV play a critical role in suppression of post transcriptional gene silencing (PTGS) machinery. Taken together, AC2 and AV2 encoded proteins of ToLCGuV are the crucial viral factors promoting asymmetric synergism with ToLCNDV. KEY POINTS • Begomoviral suppressors play vital roles in viral synergism. • AC2 and AV2 of ToLCGuV asymmetrically enhance ToLCNDV accumulation. • AC2 and AV2 of ToLCNDV and ToLCGuV AV2 are major PTGS suppressors.
Mild Cognitive impairment (MCI) is common in type 2 diabetes mellitus (T2DM) patients. The impaired cognitive function had harmful effect on patients' diabetic conditions. This study aimed to estimate the prevalence of MCI in T2DM (T2DM-MCI) patients by conducting a systematic review and meta-analysis of observational studies.
We carried out a literature search until June 1, 2020, for all observational studies in the following databases Medline (PubMed), Web of Science, and Embase. Two independent reviewers initially screened the eligible articles. Then, a meta-analysis (random effects model) was conducted to estimate the prevalence of MCI in people with T2DM with STATA 16.
A total of 1808 articles were first considered after reading title and abstract, 12 of which remained after reviewing the full text. The combined prevalence of MCI in T2DM patients was estimated to be 45.0% (95% CI=36.0, 54.0). There was no significant heterogeneity through meta-regression and sensitivity analysis. Overall, Europe (nsia. read more Primary care clinicians should pay more attention to the cognitive function of T2DM patients, as mild cognitive impairment is one of the risk factors for Alzheimer's disease.
While posterior-alone techniques have been successful for most pediatric spinal deformities, anterior spinal release may be useful for severe rigid deformities. Traditional lateral-positioned video-assisted thoracoscopic surgical release (VATSR) followed by prone posterior spinal fusion (PSF) has been criticized for adding extensive operative morbidity. We aimed to reduce its disadvantages by performing prone VATSR and PSF simultaneously and evaluate its long-term outcomes.
All consecutive patients from 1991 to 2012 undergoing VATSR and PSF at one institution were retrospectively reviewed. The inclusion criteria comprised severe rigid thoracic scoliosis (> 70°, bending correction > 45°) or kyphosis (> 75°, bolster correction > 45°), and a minimum 2year follow-up. Demographics, operative data, hospital stay, and radiographic correction data were compared between patients who had undergone sequential VATSR followed by PSF and those who had undergone these procedures simultaneously.
Of 153 patid deformities.Rice blast disease is one of the most common rice diseases worldwide. link2 It is essential to improve disease resistance through environment-friendly methods, while maintaining yield and quality parameters. In this study, jasmonic acid (JA), a plant hormone with anti-fungal activity, was obtained, at both low (100 μmol/L) and high (400 μmol/L) concentrations in rice leaves, before, during, and after infection, respectively. JA could inhibit germination and appressorium formation of rice blast spores in a dose-dependent manner. A total of 400-μmol/L JA treatment significantly enhanced cell viability and endogenous JA level in rice leaves. Furthermore, rice leaves inoculated with Magnaporthe oryzae and sprayed with JA 72 h post-inoculation showed the maximum symptom relief and the highest endogenous JA production among all treatment approaches. The expressions of defense-related genes, OsPR10a and OsAOS2, were highly up-regulated in response to JA, whereas OsEDS1 was down-regulated. Hence, we revealed that exogenous JA could activate JA signaling to effectively control the symptoms of rice blast.
The development of myocardial fibrosis is a major complication of Type 2 diabetes mellitus (T2DM), impairing myocardial deformation and, therefore, cardiac performance. It remains to be established whether abnormalities in longitudinal strain (LS) exaggerate or only occur in well-controlled T2DM, when exposed to exercise and, therefore, cardiac stress. We therefore studied left ventricular LS at rest and during exercise in T2DM patients vs. healthy controls.
Exercise echocardiography was applied with combined breath-by-breath gas exchange analyses in asymptomatic, well-controlled (HbA1c 6.9 ± 0.7%) T2DM patients (n = 36) and healthy controls (HC, n = 23). Left ventricular LS was assessed at rest and at peak exercise. Peak oxygen uptake (V̇O
) and workload (W
) were similar between groups (p > 0.05). Diastolic (E, e'
, E/e') and systolic function (left ventricular ejection fraction) were similar at rest and during exercise between groups (p > 0.05). LS (absolute values) was significantly lower at rest and during exercise in T2DM vs. HC (17.0 ± 2.9% vs. 19.8 ± 2% and 20.8 ± 4.0% vs. 23.3 ± 3.3%, respectively, p < 0.05). The response in myocardial deformation (the change in LS from rest up to peak exercise) was similar between groups (+ 3.8 ± 0.6% vs. + 3.6 ± 0.6%, in T2DM vs. HC, respectively, p > 0.05). link3 Multiple regression revealed that HDL-cholesterol, fasted insulin levels and exercise tolerance accounted for 30.5% of the variance in response of myocardial deformation in the T2DM group (p = 0.002).
Myocardial deformation is reduced in well-controlled T2DM and despite adequate responses, such differences persist during exercise.
NCT03299790, initially released 09/12/2017.
NCT03299790, initially released 09/12/2017.
Training stimuli that partially activate the neuromuscular system, such as motor imagery (MI) or neuromuscular electrical stimulation (NMES), have been previously shown as efficient tools to induce strength gains. Here the efficacy of MI, NMES or NMES + MI trainings has been compared.
Thirty-seven participants were enrolled in a training program of ten sessions in 2weeks targeting plantar flexor muscles, distributed in four groups MI, NMES, NMES + MI and control. Each group underwent forty contractions in each session, NMES + MI group doing 20 contractions of each modality. Before and after, the neuromuscular function was tested through the recording of maximal voluntary contraction (MVC), but also electrophysiological and mechanical responses associated with electrical nerve stimulation. Muscle architecture was assessed by ultrasonography.
MVC increased by 11.3 ± 3.5% in NMES group, by 13.8 ± 5.6% in MI, while unchanged for NMES + MI and control. During MVC, a significant increase in V-wave without associated changes in superimposed H-reflex has been observed for NMES and MI, suggesting that neural adaptations occurred at supraspinal level. Rest spinal excitability was increased in the MI group while decreased in the NMES group. No change in muscle architecture (pennation angle, fascicle length) has been found in any group but muscular peak twitch and soleus maximal M-wave increased in the NMES group only.
Finally, MI and NMES seem to be efficient stimuli to improve strength, although both exhibited different and specific neural plasticity. On its side, NMES + MI combination did not provide the expected gains, suggesting that their effects are not simply cumulative, or even are competitive.
Finally, MI and NMES seem to be efficient stimuli to improve strength, although both exhibited different and specific neural plasticity. On its side, NMES + MI combination did not provide the expected gains, suggesting that their effects are not simply cumulative, or even are competitive.
The present study aimed to investigate the acute effects of dynamic stretching on neurophysiological and mechanical properties of plantar flexor muscles and to test the hypothesis that dynamic stretching resulted from an interaction between stretching, movement, and contraction.
The dynamic stretching conditioning activity (DS) was compared to static stretching (SS), passive cyclic stretching (PCS), isometric contractions (IC), static stretching followed by isometric contractions (SSIC), and control (CO) conditions. Stretching amplitude (DS, SS, PCS and SSIC), contraction intensity (DS, IC and SSIC) and duration (all 6 conditions) were matched. Thirteen volunteers were included. Passive torque, fascicle length, and stiffness were evaluated from a dynamometer and ultrasonography during passive dorsiflexion. Neuromuscular electrical stimulation was used to investigate contractile properties [peak twitch torque (PTT), and rate of torque development (RTD)] and muscle voluntary activation (%VA). Gastrocnemius lateralis electromyographic activity (GL EMG/Mwave) was obtained during maximal voluntary contraction. All of these parameters were measured immediately before and 10s after each experimental condition.
Peak twitch torque, RTD, %VA, GL EMG/Mwave remained unaltered, while passive torque was significantly reduced after DS (- 8.14 ± 2.21%). SS decreased GL EMG/Mwave (- 7.83 ± 12.01%) and passive torque (- 2.16 ± 7.25%). PCS decreased PTT (- 3.40 ± 6.03%), RTD (- 2.96 ± 5.16%), and passive torque (- 2.16 ± 2.05%). IC decreased passive torque (- 7.72 ± 1.97%) and enhanced PTT (+ 5.77 ± 5.19%) and RTD (+ 7.36 ± 8.35%). However, SSIC attenuated PTT and RTD improvements as compared to IC.
These results suggested that dynamic stretching is multi-component and would result from an interaction between stretching, contraction, and movement.
These results suggested that dynamic stretching is multi-component and would result from an interaction between stretching, contraction, and movement.
Here's my website: https://www.selleckchem.com/products/escin.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team