Notes
Notes - notes.io |
The extent of extra-pulmonary MRI abnormalities and exercise intolerance correlated with serum markers of inflammation and acute illness severity. Patients had a higher burden of self-reported symptoms of depression and experienced significant impairment in all domains of quality of life compared to controls (
<0.0001 to 0.044).
A significant proportion of patients discharged from hospital reported symptoms of breathlessness, fatigue, depression and had limited exercise capacity. Persistent lung and extra-pulmonary organ MRI findings are common in patients and linked to inflammation and severity of acute illness.
NIHR Oxford and Oxford Health Biomedical Research Centres, British Heart Foundation Centre for Research Excellence, UKRI, Wellcome Trust, British Heart Foundation.
NIHR Oxford and Oxford Health Biomedical Research Centres, British Heart Foundation Centre for Research Excellence, UKRI, Wellcome Trust, British Heart Foundation.
Since mental health may influence HIV care among people living with HIV (PLHIV), we sought to evaluate the impact of anxiety and depression on ART initiation and HIV-related outcomes.
We conducted a prospective cohort study of PLHIV in the Umlazi Township of KwaZulu-Natal, South Africa. We measured depression using the Patient Health Questionnaire (PHQ-9) and anxiety using the Generalized Anxiety Disorder (GAD-7) scale, both of which have been validated in sub-Saharan Africa, among all patients prior to receiving a positive HIV test. We then followed those who tested HIV+ for 12 months to determine their time to ART initiation, missing clinic visits or refills, retention in care, hospitalization, and death. We used logistic regression models, adjusted for socio-demographic characteristics such as age and sex, to examine the effects of baseline measures of depression and anxiety on ART initiation and HIV treatment outcomes.
Among 2,319 adult PLHIV, mean age was 33 years (SD=9.3 years), 57% were female, a(PKD). The content is solely the responsibility of the authors and does not represent the official views of the National Institutes of Health or other funding agencies.Reliably monitoring sweat volume has attracted much attention due to its important role in the assessment of physiological health conditions and the prevention of dehydration. Here, we present the first example of wearable strain sensor for real-time sweat volume monitoring. Such sweat volume monitoring sensor is simply fabricated via embedding strain sensing fabric in super-absorbent hydrogels, the hydrogels can wick sweat up off the skin surface to swell and then trigger the strain sensing fabrics response. This sensor can realize real-time detection of sweat volume (0.15-700 μL), shows excellent repeatability and stability against movement or light interference, reliability in the non-pathological range (pH 4-9 and salinity 0-100 mM NaCl) in addition. Such sensor combing swellable hydrogels with strain sensing fabrics provides a novel measurement method of wearable devices for sweat volume monitoring.Metal-consuming countries depend on mining activity in other countries, which may impose potential pressure on sustainable metal supply. This study proposes an approach to analyze the responsibility of consuming countries for mining activities based on the decomposition analysis of scarcity-weighted metal footprints (S-MFs) of Japan. The application results to the Japanese final demand (iron, copper, and nickel) demonstrate the significance of country- and metal-specific conditions in terms of metal footprints and mining capacity in assessing the responsibility of consuming countries. Consuming countries can identify influential factors to reduce their S-MFs based on the decomposition analysis by discriminating the directly controllable and uncontrollable factors for consuming countries, which can help to plan different countermeasures depending on the types of the identified influential factors. The proposed approach supports metal-consuming countries to determine the effective options for reducing the responsibility for the sustainability of metal supply.Triboelectric nanogenerator (TENG) is considered as a potential solution to harvest distributed energy for the sustainable and reliable power supply of the internet of things. Although numerous researches on alternating current (AC) output TENG from fundamental physics to potential applications have been widely promoted in recent years, the studies about direct current (DC) output TENG is just beginning, especially for a constant current output. This work gives the summary of recent key researches from AC-TENG to DC-TENG, especially a constant current TENG, as well as the design of AC/DC-TENG. In addition, some new DC generators will also be summarized toward a wide range of readers. This study presents the similarities and differences between AC-TENG and DC-TENG, so that their impact and uniqueness can be clearly understood. Finally, the major challenges and the future outlooks in this rapidly emerging research field will be discussed as a guideline for future research.Biological states are controlled by orchestrated transcriptional factors (TFs) within gene regulatory networks. Here we show TFs responsible for the dynamic changes of biological states can be prioritized with temporal PageRank. We further show such TF prioritization can be extended by integrating gene regulatory networks reverse engineered from multi-omics profiles, e.g. VX-803 clinical trial gene expression, chromatin accessibility, and chromosome conformation assays, using multiplex PageRank.Therapy-induced senescence-associated secretory phenotype (SASP) correlates with overcoming resistance to immune checkpoint blockade (ICB). Intrinsic resistance to ICB is a major clinical challenge. For example, ovarian cancer is largely resistant to ICB. Here we show that adoptive transfer of SASP-boosted ex vivo therapy-induced senescent cells sensitizes ovarian tumor to ICB. Topoisomerase 1 (TOP1) inhibitors such as irinotecan enhance cisplatin-induced SASP, which depends on the TOP1 cleavage complex-regulated cGAS pathway. Significantly, intraperitoneal transfer of cisplatin-induced, SASP-boosted senescent cells with irinotecan sensitizes ovarian tumor to anti-PD-1 antibody and improves the survival of tumor-bearing mice in an immunocompetent, syngeneic model. This correlates with the infiltration of transferred senescent cells in the established orthotopic tumors and an increase in the infiltration of activated CD8+ T cells and dendritic cells in the tumor bed. Our findings indicate that adoptive transfer of SASP-boosted therapy-induced senescent cells represents a potential therapeutic strategy to sensitize tumors to ICB.Electroactive microbes is the driving force for the bioelectrochemical degradation of organic pollutants, but the underlying microbial interactions between electrogenesis and pollutant degradation have not been clearly identified. Here, we combined stable isotope-assisted metabolomics (SIAM) and 13C-DNA stable isotope probing (DNA-SIP) to investigate bisphenol S (BPS) enhanced degradation by electroactive mixed-culture biofilms (EABs). Using SIAM, six 13C fully labeled transformation products were detected originating via hydrolysis, oxidation, alkylation, or aromatic ring-cleavage reactions from 13C-BPS, suggesting hydrolysis and oxidation as the initial and key degradation pathways for the electrochemical degradation process. The DNA-SIP results further displayed high 13C-DNA accumulation in the genera Bacteroides and Cetobacterium from the EABs and indicated their ability in the assimilation of BPS or its metabolites. Collectively, network analysis showed that the collaboration between electroactive microbes and BPS assimilators played pivotal roles the improvement in bioelectrochemically enhanced BPS degradation.It is an ultimate goal in chemistry to predict reaction without recourse to experiment. Reaction prediction is not just the reaction rate determination of known reactions but, more broadly, the reaction exploration to identify new reaction routes. This review briefly overviews the theory on chemical reaction and the current methods for computing/estimating reaction rate and exploring reaction space. We particularly focus on the atomistic simulation methods for reaction exploration, which are benefited significantly by recently emerged machine learning potentials. We elaborate the stochastic surface walking global pathway sampling based on the global neural network (SSW-NN) potential, developed in our group since 2013, which can explore complex reactions systems unbiasedly and automatedly. Two examples, molecular reaction and heterogeneous catalytic reactions, are presented to illustrate the current status for reaction prediction using SSW-NN.Secreted chemokines are critical mediators of cellular communication that elicit intracellular signaling by binding membrane-bound receptors. Here we demonstrate the development and use of a sensitive real-time approach to quantify secretion and receptor binding of native chemokines in live cells to better understand their molecular interactions and function. CRISPR/Cas9 genome editing was used to tag the chemokine CXCL12 with the nanoluciferase fragment HiBiT. CXCL12 secretion was subsequently monitored and quantified by luminescence output. Binding of tagged CXCL12 to either chemokine receptors or membrane glycosaminoglycans could be monitored due to the steric constraints of nanoluciferase complementation. Furthermore, binding of native CXCL12-HiBiT to AlexaFluor488-tagged CXCR4 chemokine receptors could also be distinguished from glycosaminoglycan binding and pharmacologically analyzed using BRET. These live cell approaches combine the sensitivity of nanoluciferase with CRISPR/Cas9 genome editing to detect, quantify, and monitor binding of low levels of native secreted proteins in real time.Hypoxia is one of the critical stressors encountered by various cells of the human body under diverse pathophysiologic conditions including cancer and has profound impacts on several metabolic and physiologic processes. Hypoxia prompts internal ribosome entry site (IRES)-mediated translation of key genes, such as VEGF, that are vital for tumor progression. Here, we describe that hypoxia remarkably upregulates RNA Polymerase I activity. We discovered that in hypoxia, rRNA shows a different methylation pattern compared to normoxia. Heterogeneity in ribosomes due to the diversity of ribosomal RNA and protein composition has been postulated to generate "specialized ribosomes" that differentially regulate translation. We find that in hypoxia, a sub-set of differentially methylated ribosomes recognizes the VEGF-C IRES, suggesting that ribosomal heterogeneity allows for altered ribosomal functions in hypoxia.Circadian rhythms regulate adaptive alterations in mammalian physiology and are maximally entrained by the short wavelength blue spectrum; cataracts block the transmission of light, particularly blue light. Cataract surgery is performed with two types of intraocular lenses (IOL) (1) conventional IOL that transmit the entire visible spectrum and (2) blue-light-filtering (BF) IOL that block the short wavelength blue spectrum. We hypothesized that the transmission properties of IOL are associated with long-term survival. This retrospective cohort study of a 15-hospital healthcare system identified 9,108 participants who underwent bilateral cataract surgery; 3,087 were implanted with conventional IOL and 6,021 received BF-IOL. Multivariable Cox proportional hazards models that included several a priori determined subgroup and sensitivity analyses yielded estimates supporting that conventional IOL compared with BF-IOL may be associated with significantly reduced risk of long-term death. Confirming these differences and identifying any potential causal mechanisms await the conduct of appropriately controlled prospective translational trials.
My Website: https://www.selleckchem.com/products/vx803-m4344.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team