Notes
![]() ![]() Notes - notes.io |
Marjolin's ulcer (MU) is a rare and aggressive cutaneous malignancy that typically presented in an area of traumatized or chronically inflamed skin and particularly in burn scars. Among them, the MU in the scalp with extensive invasion of the skull is exceptional and severe. The principle of management for MU is to obtain an early diagnosis and perform prompt surgical interventions. The invasive capacity of MU may vary among different sites of the scalp, which may require different therapeutic strategies for surgical excision. However, no clear evidence has been provided to determine the invasion ability of MU at different regions of the lesion as a surgical guidance. In present study, a 41-year-old female with a 40-year history of scalp ulceration has been examined. After resection of the MU lesion, hematoxylin and eosin (H&E) staining was performed to confirm the pathology of the cutaneous malignancy after surgical excision. Furthermore, reverse transcription-quantitative PCR experiment was performed out to determine the expression levels of invasion-associated biomarkers at different sites of the scalp affected by MU. Pathological analysis with H&E staining indicated a differentiated squamous cell carcinoma with invasion of the skull. The invasion-associated biomarkers were highly expressed in the core region compared to the middle region as well as the edge of MU tissue. Taken together, the present study suggests that the expression pattern of invasion-associated biomarkers varies between different regions of the MU lesion. High expression levels in the core region of MU indicates that the resection of the center area may be critical for the successful surgical treatment of MU.Ovarian cancer is the eighth most common malignancy among women worldwide. Ovarian cancer exhibits no obvious symptoms in the early stage of tumorigenesis and currently, no effective methods for the early detection and treatment of ovarian cancer have been established. Therefore, the identification of novel targets is critical to the early diagnosis and clinical treatment of ovarian cancer. microRNAs (miRs) are small non-coding RNAs, which serve an important biological role in a number of physiological processes and in oncogenesis. Previous studies have reported that miRNA-193b is dysregulated in a variety of types of human cancer. However, the roles of miRNA-193b in human ovarian cancer has not been determined. The present study investigated the roles of miRNA-193b in human ovarian cancer cells. Reverse transcription-quantitative PCR results indicated that the expression of miRNA-193b in ovarian cancer cells was significantly down-regulated compared with non-malignant cells. Cell counting kit-8 results indicated that the up-regulation of miRNA-193b inhibited ovarian cancer cell proliferation and induced ovarian cancer cell apoptosis. The present study also indicated that stathmin 1 (STMN1) was a direct target of miRNA-193b, and the up-regulation of miRNA-193b significantly decreased the expression of STMN1 in ovarian cancer cells. In conclusion, the results demonstrated that miRNA-193b serves as a tumor suppressor in human ovarian cancer by inhibiting cell proliferation and inducing cell apoptosis. Therefore, the assessment of miRNA-193b may provide insight into a novel diagnostic biomarker and potential therapeutic target for patients with ovarian cancer.Treatment with cluster of differentiation 47 (CD47) monoclonal antibody has exhibited promising antitumor effects in various preclinical cancer models. However, its role in pancreatic ductal adenocarcinoma (PDAC) remains unclear. In the present study, the CD47 expression level was measured in PDAC patient samples. The effects of CD47 on antigen presentation and anti-tumor immunity were evaluated using phagocytotic assays and animal models. The results indicated that CD47 was overexpressed in the tumor tissue of PDAC patients compared with that in normal adjacent tissues. In the human samples, antigen-presenting cells (macrophages and dendritic cells) in tumors with high CD47 expression demonstrated low CD80 and CD86 expression levels. In an in vitro co-culture tumor cell system, CD47 overexpression was observed to inhibit the function of phagocytic cells. Furthermore, in a PDAC mouse model, CD47 overexpression was indicated to reduce antigen-presenting cell tumor infiltration and T-cell priming in tumor-draining lymph nodes. Anti-CD47 treatment appeared to enhance the efficacy of the approved immune checkpoint blockade agent anti-cytotoxic T-lymphocyte associated protein 4 (anti-CTLA4) in suppressing PDAC development in a mouse model. Therefore, it was concluded that CD47 overexpression suppressed antigen presentation and T-cell priming in PDAC. Anti-CD47 treatment may enhance the efficacy of anti-CTLA4 therapy and may therefore be a potential strategy for the treatment of PDAC patients in the future.Sepsis is a complication of infection caused by disease or trauma. Increasing evidence have shown that long noncoding RNAs (lncRNAs) are involved in the regulation of sepsis. However, the mechanism of lncRNA nuclear enriched abundant transcript 1 (NEAT1) in the regulation of sepsis progression remains to be elucidated. Lipopolysaccharide (LPS) was used to induce a sepsis cell model. The expression levels of NEAT1 and microRNA (miR)-590-3p were determined by reverse transcription-quantitative PCR. Cell viability and apoptosis were detected using Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. Western blot analysis was performed to evaluate the levels of apoptosis- and NF-κB signaling pathway-related proteins. The concentration of inflammatory cytokines was determined using ELISA. In addition, dual-luciferase reporter assay, RNA immunoprecipitation and biotin-labeled RNA pull-down assay were performed to verify the interaction between NEAT1 and miR-590-3p. The results showed that NEAT1 was highly expressed in patients with sepsis and LPS-induced H9c2 cells. Knockdown of NEAT1 decreased LPS-induced cell apoptosis and inflammation response in H9c2 cells. Meanwhile, miR-590-3p showed decreased expression in sepsis, and its overexpression could relieve LPS-induced H9c2 cell damage. Further experiments revealed that NEAT1 could sponge miR-590-3p. Knockdown of miR-590-3p reversed the inhibitory effect of NEAT1 knockdown on LPS-induced H9c2 cell damage. Additionally, the NEAT1/miR-590-3p axis could regulate the activity of the NF-κB signaling pathway. #link# To conclude, lncRNA NEAT1 accelerated apoptosis and inflammation in LPS-stimulated H9c2 cells via sponging miR-590-3p. These findings may provide a new strategy for the treatment of sepsis.The subcutaneous tissue of animals contains different cell types, and different cells have different requirements for cryopreservation. This establishes obstacles that need to be overcome in the clinical application of tissue preservation. In the present study, the effects of different freezing rates and various concentrations of cryoprotectants on the cryopreservation of subcutaneous tissue of mice were compared, and these results provided basic research data that can be used to explore the optimal cryopreservation method for tissue. The effects of three cryoprotectants, dimethyl sulfoxide, glycerinum and 1,2-propanediol, and their concentrations on the cryopreservation of subcutaneous tissue of mice were compared with slow and rapid freezing rates. The results revealed that under various cryopreservation conditions, the percentage of fibroblasts that grow from the tissue following slow cryopreservation (19.8%) was significantly higher than that following rapid freezing (6.7%) at osmotic equilibrium for 10-20 min (P less then 0.05). After 19 days of culture, under the conditions of slow freezing, with 10, 20 and 30% glycerinum as a cryoprotectant, respectively, fibroblasts grew from 26.0, 16.7 and 16.7% of the tissues, respectively. No fibroblasts were indicated in the tissue mass cultured in any other tissue blocks treated with cryopreservation solutions. Under the condition of rapid freezing, fibroblasts grew from 6.7 and 6.7% tissue blocks of 20% DMSO and 10% glycerinum, respectively, following 19 days of culture. No fibroblasts were identified in the tissue mass cultured in the other tissue blocks treated with cryopreservation solutions, and no fibroblasts were identified in the tissue blocks without osmotic balance before freezing.Clinical efficacy of conjoint fascial sheath suspension and frontalis muscle suspension was explored in treating moderate or severe congenital ptosis and their effects on ocular surface and refractive status. link2 A total of 75 patients with moderate or severe ptosis (108 eyes) treated in Yidu Central hospital from June 2014 to June 2019 were enrolled in this study, and divided into group A and group B. Group A was treated with conjoint fascial sheath suspension (n=38, 55 eyes), while group B was treated with frontalis muscle suspension (n=37, 53 eyes). link3 The following data of the two groups were compared General baseline data, total correction efficiency, satisfaction, and ocular surface after surgery, refractive status, and complications at three months after surgery. The two groups showed no significant difference in general data (P>0.05), but group A showed higher total correction efficiency and satisfaction, and less complications than those in group B (all P0.05). In terms of refractive status and ocular surface, the two surgery methods are not very different, but in terms of efficacy, conjoint fascial sheath suspension is more advantageous than frontalis muscle suspension, and it brings less complications, and enjoys a higher satisfaction, so it is worthy of promotion.Endometriosis (EM) is a common disease in women; however, the signaling pathways and related genes underlying the mechanisms of EM remain unclear. The present study aimed to investigate the role of angiotensin II receptor type 1 (AGTR1) in the pathogenesis of EM. Human EM tissues were collected, and the expression levels of AGTR1 and NF-κB in the tissues were analyzed using immunochemistry and western blotting, while the estrogen levels in the EM tissues were determined by ELISA. In vitro human endometrial stromal cells were used to investigate the expression levels of AGTR1 following exposure to estrogen; the interaction between AGTR1 and NF-κB was determined using reverse transcription-quantitative PCR and western blotting; and the effects of AGTR1 on cell proliferation, as well as the apoptotic and migratory abilities of the cells were evaluated using WST-1 assays, wound healing assays and flow cytometry, respectively. It was observed that both the expression levels of AGTR1 and the activity of NF-κB were increased in human EM tissues and stromal cells, and this activation of AGTR1 subsequently increased the activity of NF-κB. Moreover, estrogen was found to regulate the expression levels of AGTR1 in stromal cells. G418 of AGTR1 was demonstrated to promote cell proliferation and migration, in addition to preventing cells from undergoing apoptosis. In conclusion, the present study suggested that the increased activity of the AGTR1-NF-κB axis following the decreased exposure to estrogen may be important for the pathogenesis of EM. In addition, AGTR1 may be a potential therapeutic target for the treatment of EM.
Here's my website: https://www.selleckchem.com/products/geneticin-g418-sulfate.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team